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Highlights 

 

 Eukaryotic community zoned vertically, Kuroshio epi-, NPIW meso- and bathypelagic. 

 Eukaryotic plankton diversity was remarkably low in the NPIW. 

 Collodaria, Syndiniales and Oligohymenophorea were predominant in the NPIW. 

 Acantharia, Nassellaria, Spumellaria and Phaeodaria OTUs peaked at 100 m depth. 

 Taxopodia, Nassellaria and “Other Cercozoa” reads peaked in the deepest layer. 
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 2 

ABSTRACT 17 

Metabarcoding technology using high-throughput sequencing has revolutionized the current 18 

understanding of the diversity and ecology of eukaryotic microorganisms. The aim of the present 19 

study was to investigate vertical and seasonal variation in eukaryotic plankton communities and 20 

to assess the diversity of eukaryotic plankton, using 18S rRNA sequencing, over a depth gradient 21 

in subtropical waters affected by the Kuroshio Current. In particular, the present study focused 22 

on the diversity and ecology of Alveolata and Rhizaria taxa, which include a variety of plankton 23 

species with fragile skeletons or soft bodies. Three vertically distinct eukaryotic communities 24 

were identified: the Kuroshio-influenced epipelagic zone (<200 m), the North Pacific 25 

Intermediate Water (NPIW)-dominated mesopelagic zone (500–1000 m), and the bathypelagic 26 

zone (2000–3000 m). The operational taxonomic unit (OTU) richness was greatest near the 27 

surface (<200 m depth), gradually decreasing with increasing depth, and lowest in deeper layers, 28 

and OTU diversity (Pielou’s evenness and Shannon-Wiener diversity indices) were lowest in the 29 

mesopelagic layer (500–1000 m depth). Hidden diversity was observed in both groups in both the 30 

surface and deeper layers of the western North Pacific, as well as in the NPIW, which was 31 

characterized by the lowest salinity and oxygen concentrations in the study area. In the NPIW, 32 

the Rhizaria yielded relatively more sequence reads than other taxa. Furthermore, specific taxa, 33 

such as Collodaria (Radiolaria), Syndiniales (dinoflagellates), and Oligohymenophorea (ciliates), 34 

were predominant, according to OTU richness and the relative abundance of sequence reads. 35 

These findings indicate that a unique ecosystem was formed over time in the NPIW-isolated water 36 

mass. 37 

 38 
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 4 

1 Introduction 49 

The Kuroshio Current is a warm ocean current that transfers heat and a diverse array of organisms 50 

to the high latitudes of the central North Pacific, and because many fish species spawn and migrate 51 

in the surrounding areas, the current substantially influences the ecosystem structure and fisheries 52 

in East Asia (Barkley, 1970; Qiu and Lukas, 1996; Imasaki et al., 2001; Sassa et al., 2008; 53 

Morimoto, 2010; Sugisaki et al., 2010; Harris and Lang, 2014; Yamazaki et al., 2016; Nagai et 54 

al., 2019; Kobari et al., 2020). Marine ecosystems are based on primary production by 55 

phytoplankton and bacterial plankton, and the energy and organic materials that these organisms 56 

produce are transferred to higher-trophic-level organisms, such as fishes, through intermediates, 57 

like heterotrophic plankton, that consume primary producers. Therefore, it is essential to elucidate 58 

the dynamics of lower trophic levels in the Kuroshio ecosystem, which is significant in terms of 59 

oceanography and fisheries, and to monitor its continuous changes. 60 

Even though a large proportion of plankton species are protists (i.e., eukaryotic, 61 

predominantly single-celled organisms), most in situ studies of plankton communities have 62 

focused on relatively large zooplankton, such as crustaceans, or phytoplankton, such as diatoms, 63 

which can be identified using microscopy. Moreover, marine plankton are highly diverse, and 64 

advanced techniques are often required for morphological identification. Advances in molecular 65 

biological techniques, such as DNA metabarcoding using high-throughput sequencing, have 66 

enabled researchers to investigate the structures of plankton communities that contain small and 67 

amorphous plankton species (Countway et al., 2007; Schnetzer et al., 2011; Hu et al., 2016; 68 

Pernice et al., 2016; Ruppert et al., 2019; Canals et al., 2020; Brisbin et al., 2020; Ollison et al., 69 

2021). Metabarcoding has also become a powerful and efficient tool for monitoring and detecting 70 
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 5 

hidden diversity, with community-wide taxonomic coverage (Lindeque et al., 2013; Mohrbeck et 71 

al., 2015; Valentini et al., 2016; Hirai et al., 2017; Ruppert et al., 2019; Suter et al., 2020). The 72 

taxonomic identification of Alveolata and Rhizaria, which contain many species with fragile 73 

skeletons (e.g., radiolarians) or soft bodies (e.g., ciliates), using morphological techniques has 74 

always been considered difficult. Recent DNA metabarcoding studies have revealed that 75 

Alveolata and Rhizaria are highly diverse and contribute significantly to ecological processes, 76 

such as vertical exports and trophic transfers, in marine ecosystems (Bescot et al., 2016; 77 

Gutierrez-Rodriguez et al., 2019; Preston, 2019). 78 

The structures of Alveolata and Rhizaria communities are drastically affected by depth 79 

and season (Not et al., 2007; Nakamura et al., 2013). In the areas surrounding the Kuroshio 80 

Current, the environmental conditions of the marine environment vary both horizontally and 81 

vertically (Kuroda et al., 2018; Yasuda, 2003; Miyazawa et al., 2009). Thus, community structure 82 

may be significantly affected by environmental change. A study that used 18S rRNA sequencing 83 

to investigate the eukaryotic plankton community of coastal waters affected by the Kuroshio 84 

Current reported diverse assemblages of diatoms and dinoflagellates (Kok et al., 2012), and a 85 

more recent study, which also investigated eukaryotic plankton communities using 18S rRNA, 86 

reported finding three distinct communities (coastal, Kuroshio, and mixed water) within the 87 

surface layer of the northwestern Pacific (Wu et al., 2020). Meanwhile, Endo and Suzuki (2019), 88 

who surveyed the surface layer, reported that diatoms and haptophytes were more diverse in the 89 

Kuroshio axis. Furthermore, a water mass called the North Pacific Intermediate Water (NPIW) is 90 

formed in the mixed water region between the Oyashio and Kuroshio waters in the western North 91 

Pacific and is widely distributed in subtropical North Pacific waters between the surface and deep 92 
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 6 

layers and between 20 and 45°N (Sverdrup et al., 1942; Talley, 1993; Yasuda, 1997; Masujima 93 

et al., 2003; Shimizu et al., 2004). Most studies of plankton in the NPIW have focused on 94 

foraminiferans or large gelatinous zooplankton (Ortiz et al., 1996; Morita et al., 2017), and the 95 

comprehensive plankton community structure, especially in the southern portions of the NPIW, 96 

has yet to be reported. 97 

The aim of the present study was to investigate the eukaryotic plankton communities 98 

in subtropical waters, in which epipelagic and mesopelagic layers are associated with different 99 

water bodies (the Kuroshio Current and NPIW, respectively). Year-round seasonal surveys of 100 

marine plankton and physicochemical environmental parameters at different depths (5–3000 m) 101 

were conducted at several sites along a transect across Kuroshio, and 18S rRNA (V7–9) DNA 102 

metabarcoding was used to assess the dynamics and diversity of eukaryotic plankton communities. 103 

 104 

 105 

2 Material and methods 106 

2.1 Sampling locations 107 

Sampling was conducted from aboard the R/V Soyo-Maru (National Research Institute of 108 

Fisheries Science, Japan Fisheries Research and Education Agency) in the northwestern Pacific, 109 

south of Japan, adjacent to the Kuroshio Current (Fig. 1). A total of 110 samples were collected 110 

from different depths (from 5 or 10 m to 3000 m) during five cruises that were conducted from 111 

August 2015 to August 2016 (Table 1), and the locations of sampling stations were selected in 112 

order to establish a transect that crossed the Kuroshio Current axis at 138°E (Fig. 1). The sampling 113 

sites were designated as northern (north of Kuroshio), middle (Kuroshio axis, but later found to 114 
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 7 

be off-axis), or southern (south of Kuroshio), and the location of the Kuroshio Current axis was 115 

determined using hydrographic condition images based on data from vessels, satellites, and Japan 116 

Meteorological Agency products, which were published by the fisheries research institutes of 117 

Tokyo, Chiba, Kanagawa, Shizuoka, Mie and Wakayama prefectures (provided on website of 118 

Kanagawa Prefectural Fisheries Technology Center; Fig. 1). 119 

 120 

2.2 Seawater sampling and processing 121 

Vertical temperature and salinity profiles were measured continuously using a conductivity-122 

temperature-depth (CTD) sensor (SBE 911plus; Seabird Co.). Seawater samples for generating 123 

discrete vertical profiles of nutrients (nitrate+nitrite, silica, and phosphate) and chlorophyll a 124 

concentrations were collected at several depths using Niskin bottles mounted to the rosette 125 

carrying the CTD sensor. For DNA metabarcoding analysis, seawater samples (1 L) were passed 126 

through Nucleopore membrane filters (0.2 μm), and stored at -30°C until the DNA extraction. 127 

DNA was extracted using 5% Chelex buffer, as described previously (Nagai et al., 2012; Tanabe 128 

et al., 2016). For chlorophyll a analysis, seawater samples (300 mL) were filtered onto Whatman 129 

GF/F filters, extracted using 6 mL of N,N-dimethylformamide (DMF), and analyzed by applying 130 

the fluorometric Welschmeyer method. Seawater samples for chlorophyll a and nutrient analysis 131 

were stored at -30°C until nutrient and chlorophyll concentrations were measured using a flow 132 

injection analyzer (TrAAcs 2000; Bran + Luebbe) and a fluorometer (10-AU; Turner Designs, 133 

Inc.), respectively. 134 

 135 
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 8 

2.3 DNA sequence generation and processing 136 

Metagenomic analysis was performed using the MiSeq 300PE platform (Illumina, San Diego, CA, 137 

USA) and universal primers (SSR-F1289-sn, F: TGGAGYGATHTGTCTGGTTDATTCCG; 138 

SSR-R1772-sn, R: TCACCTACGGAWACCTTGTTACG; Sildever et al., 2019), which were 139 

designed to amplify the V7–9 hypervariable regions of the 18S-rRNA gene. A massively parallel 140 

paired-end sequencing workflow was designed by consulting the Illumina document (Illumina, 141 

2013). Two-step PCR was used to construct paired-end libraries (Sildever et al., 2019), and the 142 

resulting PCR products were quantified, pooled in equal concentrations, and stored at -30°C until 143 

sequenced using the MiSeq Reagent Kit v3 (2 × 300 bp; Illumina). 144 

 145 

2.4 Metabarcoding data treatment processes and operational taxonomic unit picking 146 

Nucleotide sequences were demultiplexed using the 5-multiplex identifier tags and primer 147 

sequences. Sequences that contained palindromes of >30 bp and homopolymers of >9 bp were 148 

trimmed at both ends. The 30 tails with mean quality scores of <30 at the end of the last 25-bp 149 

window and 50 and 30 tails with mean quality scores <20 at the end of the last window were also 150 

removed. Sequences longer than 300 bp were truncated to 300 bp by trimming 30 tails, and 151 

sequences shorter than 250 bp were filtered out. Both demultiplexing and trimming were 152 

performed using Trimmomatic version 0.35 (http://www.usadellab.org/cms/?page=trimmomatic).  153 

The trimmed and filtered sequences were merged into paired reads using Usearch 154 

version 8.0.1517 (http://www.drive5.com/usearch/). After singletons were removed, the 155 

remaining sequences were aligned using Clustal Omega version 1.2.0. 156 

(http://www.clustal.org/omega/). Multiple sequences were aligned, and only sequences that were 157 
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 9 

contained more than 75% of the read positions were extracted. Filtering and part of the multiple-158 

alignment process were performed using the screen.seqs and filter.seqs commands in Mothur, as 159 

described in the MiSeq standard operating procedure (http://www.mothur.org./wiki/MiSeq_SOP; 160 

Schloss et al., 2011), and erroneous and chimeric sequences were detected and removed using the 161 

pre.cluster (diffs=4) and chimera.uchime (minh=0.1) commands in Mothur, respectively 162 

(http://drive5.com/usearch/manual/uchime_algo.html; Edgar et al., 2011).  163 

The sequence data were divided into several groups and treated separately, owing to 164 

the limited memory capacity of the server. The FASTA file (result.fasta) of each group was 165 

merged, and identical sequences were collated into operational taxonomic units (OTUs) using the 166 

unique.seqs command in Mothur. Because representative sequences from different Miseq runs 167 

could contain identical sequences, the sequences were clustered to re-select representative 168 

sequences at a 0.99 level of sequence identity using CD-HIT-EST version 4.6.8 (Li and Godzik, 169 

2006) with command-line parameters ‘-c 0.99 -n 11 -d 0 -p 1’. Representative sequences, which 170 

were designated as OTUs, were counted using the count.seqs command, and sequences clustered 171 

into OTUs between different runs were counted by referring to both count.seqs and CD-HIT data. 172 

These sequences were used for subsequent taxonomic identification analyses, and demultiplexed 173 

and filtered, but untrimmed, sequence data were deposited into the DDBJ Sequence Read Archive 174 

(access no. DRA010320).  175 

 176 

2.5 OTU identification 177 

To taxonomically identify the selected OTUs, a subset of nucleotide databases that satisfied the 178 

chosen conditions (described below) were prepared for BLAST analysis. One keyword was 179 
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 10 

selected from among “ribosomal,” “rrna,” and “rdna,” but “protein” protein was not included in 180 

the title. For the taxonomy search, the keywords “metagenome,” “uncultured,” and 181 

“environmental” were not included. The sequences of retrieved GenBank IDs from the nucleotide 182 

database downloaded from the NCBI FTP server on March 22, 2019, were used to construct a 183 

reference sequence database. 184 

Each OTU was then identified by BLAST search (Cheung et al., 2010) using NCBI 185 

BLAST+ 2.2.30+ (Camacho et al., 2009), with the default parameters, and nucleotide subset 186 

described above as the database. For each query sequence, taxonomic information was obtained 187 

from BLAST hits with the highest bitscores, and OTUs with the same top hit were merged. When 188 

an OTU matched several data points with the same bitscore and top hit similarity, the OTUs were 189 

merged. Therefore, in some cases, several data were merged in a single OTU. Because the 190 

removal of error-containing sequences was imperfect and error-containing sequences remained 191 

in the dataset, error-containing sequences were detected as artificial OTUs with the same top 192 

BLAST hit name but with slight differences. To avoid the overestimation of OTU richness, 193 

artificial OTUs were merged and represented by the OTU with the highest similarity score. One 194 

OTU with abnormally high read numbers was excluded from data analysis because it was thought 195 

to contain chimeric sequences. 196 

 197 

2.6 Data analysis 198 

All multivariate analyses of plankton community structure and diversity were performed using 199 

PRIMER version 7 with the PERMANOVA+ add-on software (Anderson et al., 2008; Clarke and 200 

Gorley, 2015). For multivariate analyses, Bray-Curtis similarity among samples was calculated 201 
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 11 

using log-transformed sequence abundance data. Non-metric multidimensional scaling ordination 202 

was used to visualize differences between the plankton communities of seawater samples, and 203 

similarity analysis was used to identify differences between samples collected at different depths 204 

or during different months (Clarke, 1993). To investigate the effects of environmental variables 205 

on Alveolata and Rhizaria communities, multicollinearity was addressed by removing variables 206 

with correlations of >0.95, and the data were processed using distance-based linear modeling 207 

(DistLM) and redundancy analysis (dbRDA). Plankton diversity was assessed by calculating 208 

richness (number of OTUs), Shannon-Wiener diversity (Shannon and Weaver, 1949), and 209 

evenness (Pielou, 1966). 210 

 211 

 212 

3 Results 213 

3.1 Physical and chemical characteristics of the water masses 214 

Environmental variation was observed among the sampling areas, northern sites, and southern 215 

sites of each cruise (Fig. 2 and Fig. S1). Vertical mixing in the surface layer was observed in 216 

March (up to ~100 m at the northern site and ~200 m at the southern site; Fig. 2). The maximum 217 

salinity was observed in the surface layer, whereas the salinity minimum layers were observed at 218 

750–1000 m in the southern sites and 300–500 m in the northern and middle sites (Fig. 2). A 219 

potential density of 26.8 σθ (range: 26.6–26.9 σθ), which indicated NPIW, was also observed at 220 

the salinity minimum layers (Fig. 2). Oxygen decreased with increasing depth, and oxygen 221 

minimum layers were observed just below the salinity minimum layers (1250 and 750–1000 m at 222 

the southern and northern sites, respectively; Fig. 2). In contrast to oxygen levels, nutrient 223 
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 12 

(nitrate+nitrite, silica, and phosphate) concentrations increased with increasing depth (Fig. S1), 224 

and maximum nitrate+nitrite and phosphate concentrations were observed in the oxygen 225 

minimum layers (Fig. S1). 226 

 227 

3.2 Eukaryotic plankton community structure and diversity 228 

The present study detected a total of 1956 OTUs of oceanic plankton, including 872 OTUs 229 

attributed to supergroup Alveolata, which was represented by dinoflagellates and ciliates; 202 230 

OTUs attributed to Rhizaria, which was represented by radiolarians and cercozoans; 275 OTUs 231 

attributed to Opisthokonta, which was represented by metazoans and fungi; 323 OTUs attributed 232 

to Stramenopiles, which was represented by diatoms; and 133 OTUs attributed to Archaeplastida 233 

(Fig. 3). Alveolata accounted for the largest proportion (nearly half) of all OTUs, and Rhizaria 234 

and Alveolata accounted for 33 and 40% of all sequence reads, respectively (Fig. 3). 235 

Non-metric multidimensional scaling ordination and analysis of similarity revealed 236 

significant differences in oceanic plankton communities with respect to water depth (global 237 

R=0.751, p=0.001, no. permutations=999; Fig. 4). Pairwise tests revealed significant differences 238 

between shallow and deep communities (Table 2). There were significant differences (R=0.92–1, 239 

p=0.001) between communities from surface layers (5–10, 50, and 100 m) and deeper layers (500, 240 

1000, 2000, and 3000 m) and small differences (highly overlapped) between communities 241 

collected at 5, 10, and 50 m (R=0.13, p=0.009), 500 and 1000 m, and 2000 and 3000 m (R=0.18–242 

0.22, p=0.001). However, no significant differences were detected in the plankton communities 243 

collected during different months (global R=0.031, p>0.05; pairwise tests R<0.07, p>0.05, no. 244 

permutations=999). 245 
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More OTUs were detected in surface layers (<200 m depth) than in deeper layers (>200 246 

m depth), however, other diversity measures failed to decrease with increasing depth that Pielou’s 247 

evenness was higher at 2000 and 3000 m but lower at 500 and 1000 m, and Shannon-Wiener 248 

diversity was higher in surface layers but lower at 500 and 1000 m (Fig. 5). The mean number of 249 

OTUs for most groups, including Alveolata, Archaeplastida, Excavata, Haptophyta, Opisthokonta, 250 

and Stramenopiles, were consistently low in deep layers and were three to 19 times higher in 251 

surface layers. However, the richness of Rhizaria peaked at 100 m (41 OTUs; Fig. 6a). The 252 

proportion of sequence reads attributed to Alveolata was relatively constant (35–45%), regardless 253 

of depth, whereas the proportions attributed to Opisthokonta and Archaeplastida were higher at 254 

depths of <100 m, and the proportion attributed to Rhizaria was higher at depths of >100 m, 255 

especially at 500 and 1000 m (Fig. 6b). 256 

 257 

3.3 Alveolata and Rhizaria communities 258 

Among the Alveolata taxa, dinoflagellates (i.e., Dinoflagellata) represented the largest number of 259 

OTUs (659) and proportion of sequence reads (91.6%), followed by ciliates (i.e., Ciliophora; 167 260 

OTUs and 5.4% of sequence reads; Fig. 7). Among the dinoflagellates, Gymnodiniales, 261 

Syndiniales, and Peridiniales accounted for relatively high proportions of sequence reads (32.9, 262 

29.2, and 19.5%, respectively; Fig. 7), and Peridiniales and Gymnodiniales also accounted for 263 

relatively large numbers of OTUs (240 and 152, respectively; Fig. 7). Among the ciliates, 264 

Oligohymenophorea and Oligotrichia accounted for relatively high proportions of sequence reads 265 

(45.7 and 27.1%, respectively) and numbers of OTUs (27 and 66, respectively; Fig. 7). 266 
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Among the Rhizaria taxa, Radiolaria and Cercozoa accounted for nearly half of all 267 

OTUs (111 and 90 OTUs, respectively; Fig. 8), and no OTUs were attributed to Foraminifera, 268 

which is another major group in Rhizaria. Among Radiolaria, Spumellaria accounted for the 269 

greatest number of OTUs (n=37), followed by Acantharia (34 OTUs), Collodaria (24 OTUs), 270 

Nassellaria (12 OTUs), and Taxopodia (4 OTUs; Fig. 8). However, for Cercozoa, most OTUs 271 

were categorized as “Other Cercozoa” (86 OTUs, 95.6%), and the remaining four were attributed 272 

to Phaeodaria (4.4%; Fig. 8). Radiolaria accounted for most of the sequence attributed to Rhizaria 273 

(97.2%), whereas Cercozoa accounted for only 2.8% (Fig. 8), and among the Radiolaria sequence 274 

reads, Collodaria accounted for the highest proportion (48.7%), followed by Taxopodia (20.6%), 275 

Acantharia (15.0%), Spumellaria (12.7%), and Nassellaria (3.1%; Fig. 8). For the Cercozoa 276 

sequence reads, “Other Cercozoa” accounted for the highest proportion (93.7%), and Phaeodaria 277 

accounted for only 6.3% (Fig. 8). 278 

 Cluster analysis classified the 110 Alveolata community samples into two large 279 

clusters, the surface layer (<200 m) and deeper layer (>200 m) at 29% similarity, accordingly to 280 

the similarity profile test (SIMPROF; Clarke, 1993), and the 110 Rhizaria community samples 281 

into three large clusters, the surface layer (<200 m), mainly composed of samples from 50 m and 282 

100 m layers (with one 500 m layer sample), and a deeper layer (>200 m), at 22.5 and 37% 283 

similarities based on the SIMPROF test (Fig. 9). Further community structure analysis was 284 

conducted each on the surface layer (<200 m) and the deeper layer (>200 m), and only surface 285 

layer communities showed significant differences between sampling months: March vs. other 286 

months (ANOSIM pairwise test, R=0.40–0.57, p=0.001) for the Alveolata community and March 287 
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vs. August (both 2015 and 2016; ANOSIM pairwise test, R=0.44–0.47, p=0.001) for the Rhizaria 288 

community. 289 

DistLM analysis revealed significant associations between both the Alveolata and 290 

Rhizaria communities and the ten (<200 m) or eight (>200 m) of the tested environmental 291 

variables (Table 3). One variable (phosphate concentration) was excluded prior to analysis of 292 

surface layer communities because it was strongly correlated (|r|>0.95) with both nitrate+nitrite 293 

and silica, and two variables (phosphate and silica) were excluded from analysis of deeper layer 294 

communities because they were strongly correlated with nitrate+nitrite (|r|>0.95). In the marginal 295 

tests of DistLM analysis, depth, temperature, nitrate+nitrite, and silica individually explained 296 

10.4–13.3% of variation in surface layer Alveolata community structure, and depth, temperature, 297 

and salinity individually explained 8.1–10.7% of variation the deeper layer Alveolata community 298 

structure (Table 3). Meanwhile, depth, temperature, nitrate+nitrite, and chllophyll a individually 299 

explained 8.2–16.5% of variation in the surface layer Rhizaria community structure, and depth, 300 

temperature, and salinity individually explained 12.8–16.7% of variation in the deeper layer 301 

Rhizaria community structure (Table 3). 302 

For the Alveolata community structure, the first two dbRDA axes explained 65.5 and 303 

24.1% of the fitted and total variation in the surface layer, respectively, and 68.2 and 15.3% of 304 

the fitted and total variation in the deeper layer. For the Rhizaria community structure, the first 305 

two dbRDA axes explained 76.1 and 31.1% of the fitted and total variation in the surface layer, 306 

respectively, and 76.7 and 22.2% of the fitted and total variation in the deeper layer. In the analysis 307 

of surface layer Alveolata and Rhizaria communities, vector overlay indicated that axis 1 was 308 

strongly correlated with depth and that axis 2 was strongly correlated with month, whereas in the 309 
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analysis of deeper layers, axis 2 was strongly correlated with temperature and nitrate+nitrite for 310 

the Alveolata community and with temperature for the Rhizaria community (Fig. 9). In addition 311 

to depth, season was also a variation factor for Alveolata and Rhizaria communities in the surface 312 

layer. 313 

The mean OTU richness and sequence read proportions of Alveolata at different depths 314 

were compared with respect to class and order (Figs. S2 and S3). Most Alveolata taxa yielded 315 

greater OTU richness in surface layers, although Syndiniales OTUs were more evenly distributed 316 

and peaked at 500 m (Fig. S2). The proportions of sequence reads of some dinoflagellates (i.e., 317 

Gymnodinales, Peridiniales, Coccidinales, Prorocentrales, and Gonyaulacales), ciliates (i.e., 318 

Oligotrichia, Mesodiniea, and Nassophorea), and Apicomplexa in surface layers gradually 319 

decreased with increased depth, to 1000 m depth, and then increased at 2000 and 3000 m (Fig. 320 

S3), whereas proportions of sequence reads for both Syndiniales (dinoflagellates) and 321 

Oligohymenophorea (ciliates) peaked at both 500–1000 m depths (Fig. S3). 322 

 Mean numbers of Acantharia, Nassellaria, Spumellaria, and Phaeodaria OTUs peaked 323 

at 100 m depth, whereas Collodaria OTUs peaked at 500 m depth (Fig. S4). The mean number of 324 

Collodaria OTUs was relatively low in the upper layer, whereas the number of ‘Other Cercozoa’ 325 

OTUs decreased gradually from the surface layers to the deeper layers. The vertical dynamics of 326 

Acantharia, Nassellaria, and Spumellaria OTU number in the present study suggests that these 327 

groups are more diverse in surface layers than in deeper layers. The proportions of Acantharia, 328 

Nassellaria, Taxopodia, and “Other Cercozoa” sequence reads peaked at 2000 or 3000 m (Fig. 329 

S5). Meanwhile, the proportion of Collodaria sequence reads peaked at 500 m, and similar to 330 

Collodaria OTU numbers, the mean proportions of sequence reads were relatively small at 5–10, 331 
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50, and 100 m. In contrast, proportion of Phaeodaria OTUs and sequence reads peaked at 50 and 332 

100 m, respectively. 333 

 334 

 335 

4 Discussion 336 

The present study revealed that there are clear differences in the community structure and 337 

diversity of eukaryotic plankton found at different depths and in different water masses in the 338 

western North Pacific. The eukaryotic plankton community differed distinctly between the 339 

epipelagic layer (<200 m), which was strongly influenced by the Kuroshio Current, and deeper 340 

layers (>200 m). These findings are similar to those of a study conducted in the Atlantic, which 341 

also reported distinct protistan assemblages in the euphotic zone and deep sea and a vast diversity 342 

of Alveolata and Rhizaria (Countway et al., 2007; Not et al., 2007). In addition, the present study 343 

also noted a significant difference in the eukaryotic plankton communities of the mesopelagic 344 

layer (500–1000 m) and bathypelagic layer (2000–3000 m). In general, the plankton community 345 

varied in accordance with vertical changes in environmental conditions. For example, nutrient 346 

concentrations and salinity increased with increasing depth, and temperature and chlorophyll 347 

concentration decreased with increasing depth. However, diversity did not exhibit a linear 348 

gradient with depth. The number of OTUs was greatest in the surface layer (<200 m depth), 349 

decreasing with increasing depths, and lowest in the deepest layer (3000 m), whereas the diversity 350 

indexes (Pielou’s evenness and Shannon-Wiener diversity index) were remarkably low in the 351 

mesopelagic layers (500–1000 m depth), where the NPIW water mass was distributed (Reid, 352 

1965; Sverdrup et al., 1942). The NPIW is formed in the mixed water region between the 353 
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Kuroshio Extension and the Oyashio Front in the western North Pacific and spreads southward 354 

(Talley, 1993; Watanabe et al., 1995). The plankton community structures of the Oyashio and 355 

Kuroshio water areas are distinct, and the plankton community of the nutrient-rich Oyashio area 356 

is generally characterized by fewer species (lower diversity) and higher abundance, whereas the 357 

plankton community in the nutrient-poor Kuroshio area is characterized by more species (higher 358 

diversity) and lower abundance (Sogawa et al., 2013; Morita et al., 2017; Ohtsuka and Nishida, 359 

2017; Matsumoto and Yamaguchi, 2020). A study that used a video plankton recorder reported 360 

that Hydrozoa, Ctenophora, Copepoda, and Rhizaria were most abundant within the NPIW and 361 

emphasized that radiolarians may have physically accumulated in the water mass (Ichikawa, 362 

2008; Ichikawa et al., 2007). The estimated residence time of NPIW, which spreads southward to 363 

Japan, is 20 years, with a subsequent increase in salinity and reduction of oxygen (Shimizu et al., 364 

2004; Talley, 1993; Talley et al., 1995). The low mesopelagic diversity in the study area could be 365 

due to the special formation process and environmental characteristics (salinity minimum and 366 

oxygen minimum) of the NPIW and long residence time that maintains a uniform environment. 367 

These results suggest that unique isolated ecosystems form over time in NPIW. For example, 368 

several radiolarian species were detected almost exclusively in the NPIW (e.g., Collophidium 369 

ovatum, Thalassicolla pellucida, and Thalassicolla melacapsa, Collodaria). Furthermore, 370 

Collodaria, which include a large number of mixotrophs that harbor algal symbionts, are 371 

frequently reported in the surface layers (Biard et al., 2016; Nakamura et al. 2019; Suzuki and 372 

Not, 2015), even though they retain high species diversity in both mesopelagic and deep layers 373 

(Biard et al., 2015; Pernice et al., 2016). In the present study, the OTU and sequence read numbers 374 

attributed to Order Collodaria were highest in the NPIW, whereas Order Orodaria, which is 375 
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closely related to the Collodaria, has only been detected in the deep sea (Nakamura et al. in press). 376 

Therefore, it is quite possible that unknown Collodaria taxa dominate subsurface layers. 377 

Furthermore, some collodarian species are known to exhibit two (or possibly more) morphologies 378 

(Biard et al., 2015), and it is possible that they change their distribution depth, depending on life 379 

stage. For example, Collodaria increase their colony size via asexual reproduction in surface 380 

layers and by sexual reproduction in deeper layers. Further studies are needed to clarify the life 381 

cycle of radiolarians. 382 

 The vertical distribution of Gymnodinales and Syndiniales sequence reads showed the 383 

opposite trend; the relative abundances of Gymnodinales (and Peridiniales) were smallest at 1000 384 

m depth layer, higher closer to the surface, and peaked at surface, whereas, those of Syndiniales 385 

sequence reads peaked at 1000 m, lower closer the surface, and lowest at the surface. Many 386 

Karenia and Noctiluca species that cause algal blooms belong to Gymnodiniales, which are either 387 

autotrophs that perform photosynthesis or heterotrophs that feed on phytoplankton in the euphotic 388 

zone of the surface layer (e.g., Gomez, 2007; Guiry and Guiry, 2015; Landsberg et al., 2009). 389 

Syndiniales taxa, which parasitize crustaceans, radiolarians, algae, ciliates, and other 390 

dinoflagellates, exhibit high diversity and sequence abundance in recent 18S rRNA studies (Bråte 391 

et al., 2012; Guillou et al., 2008; van den Hoek et al., 1995; López-García et al., 2001; Strassert 392 

et al., 2018). The relatively high abundance of Syndiniales (Alveolata) sequence reads, along with 393 

those of radiolarians, at the NPIW suggests that parasitic infections of radiolarians by Syndiniales 394 

might play a crucial role in determing the patterns observed in the NPIW ecosystem. 395 

It is interesting to note that the relative abundances of Peridiniales sequence reads were 396 

highest in the bathypelagic layers (2000–3000 m). Gymnodiniales also exhibited relatively high 397 
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read numbers in the bathypelagic layers. Syndiniales exhibited relatively high read numbers in 398 

the deep layers. Most previous studies of Alveolata have focused on coastal areas or euphotic 399 

zones (e.g., Anderson et al., 1998; Gomez, 2007). However, in the present study, Alveolata 400 

exhibited consistently large proportions of OTUs and sequence reads, regardless of depth, and 401 

accounted for 41–47% of all OTUs and 35–45% of all sequence reads. These results suggest that 402 

a few groups of Alveolata (e.g., Peridiniales, Gymnodiniales, and Syndiniales) are abundant in 403 

both the surface layer and deeper layers and that such taxa may substantially affect marine 404 

ecosystems in relatively shallow coastal areas and euphotic zones, as well as in the entire open 405 

ocean ecosystem. 406 

Foraminifera are one of the main taxa in the supergroup Rhizaria, which contains more 407 

than 4000 species (mostly benthic; Nakamura et al., 2019). However, no Foraminifera sequence 408 

reads were detected in the present study, likely because the ribosomal DNA sequences of 409 

foraminiferans differ largely from those of other rhizarians (e.g., Radiolaria and Phaeodaria; 410 

Ishitani and Takishita, 2015). Radiolaria contain ~1000 described species (excluding extinct 411 

species), whereas Cercozoa contain fewer (Nakamura et al., 2015). Radiolarians generally possess 412 

solid siliceous skeletons and are larger than cercozoans, which generally have fragile or absent 413 

skeletons. Therefore, more radiolarian species have been described, presumably because they are 414 

more recognizable microscopically. Considering that the metabarcoding results of the present 415 

study indicated similar proportions of Radiolaria and Cercozoa OTUs, previous studies might 416 

have underestimated the species diversity of Cercozoa, which are generally parasitic (except for 417 

phaeodarians; Nakamura and Suzuki, 2015a). 418 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 21 

Even though only a single species, Sticholonche zanclea Hertwig 1877, is classified in 419 

the Order Taxopodia (Suzuki and Not, 2015), four distinct Taxopodia OTUs were detected in the 420 

present study. Thus, some genetically distinct lineages may exist within the Taxopodia. The total 421 

read numbers of Taxopodia were generally higher than those of other radiolarian orders and 422 

peaked at a depth of 3000 m. These results suggest that Taxopodia taxa are abundant in deep 423 

layers, despite previous reports that they are mainly distributed in the surface and mesopelagic 424 

layers (e.g., Suzuki and Not, 2015). Because Taxopodia taxa are genetically and morphologically 425 

distinct from other radiolarian orders (Suzuki and Not, 2015), the DNA copy numbers of 426 

Taxopodia taxa might differ from those of other radiolarian orders. It is difficult to ascertain the 427 

vertical profile of Phaeodaria OTU numbers since only four OTUs were detected. However, it is 428 

worth noting that the OTUs and sequence reads of Phaeodaria were mainly detected in surface 429 

layers (50 and 100 m), which corresponds to recent reports that Phaeodaria are occasionally found 430 

in shallow layers (Biard and Ohman, 2020). Since several new Phaeodaria species were recently 431 

described near the survey area (Nakamura et al., 2013, 2016, 2018), some species might be highly 432 

abundant in the surface layers. 433 

 434 

 435 

5 Conclusions 436 

The marine ecosystem is greatly affected by physical changes, such as oceanographic structure 437 

variation and climate change. Microplankton and primary producers with rapid life cycles are the 438 

first to be affected by physical changes and subsequently affect the productivity of meso-439 

macrozooplankton and fishery species located at higher trophic levels. Here, the present study 440 
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demonstrates that the plankton community structure is significantly affected by vertical marine 441 

structure in the waters around the Kuroshio Current. In the North Pacific Intermediate Water 442 

(NPIW), which is formed in the northwestern Pacific Ocean and extends to the mesopelagic layer 443 

around the Kuroshio Current, the diversity of eukaryotic plankton communities is lowest 444 

vertically, and the community of the NPIW, isolated from the other vertical layers (surface and 445 

bathypelagic), form a unique ecosystem. The Alveolata and Rhizaria communities in the 446 

Kuroshio-influenced epipelagic zone exhibited seasonal variation. In oligotrophic waters, such as 447 

those around the Kuroshio Current, marine production is especially supported by microplankton. 448 

Thus, integrated research on the whole ecosystem, from microplankton to fish species, together 449 

with changes in the oceanographic structure, are needed to understand the variation of fishery 450 

resources, and to conduct effective fisheries management. In addition, for changes that involve 451 

anthropogenic effects, such as climate change and marine resources reduction, it is essential to 452 

conduct interdisciplinary research of human societies and natural ecosystems (socio-ecological 453 

systems), as well as to implement specific countermeasures based on the findings of such studies. 454 

 455 
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Figure captions 739 

Figure 1. Survey area and locations of sampling stations in the western North Pacific. Dotted 740 

lines indicate the Kuroshio Current axis of each cruise. 741 

Figure 2. Vertical profiles of the physical and chemical environmental variables in the survey 742 

area. The sampling sites were categorized as northern (north of the Kuroshio Current), middle 743 

(near the Kuroshio Current axis), or southern (south of the Kuroshio Current). 744 

Figure 3. Taxonomic compositions of operational taxonomic units (OTUs) and sequence reads 745 

detected by 18S rRNA gene metabarcoding using high-throughput sequencing. 746 

Figure 4. Non-metric, multi-dimensional scaling ordination of oceanic plankton communities. 747 

Each plot represents samples collected at a specific depth. Bray-Curtis similarity among the 748 

samples was calculated from log-transformed sequence abundance data.  749 

Figure 5. Diversity of oceanic plankton communities detected by metagenetic analysis with 750 

respect to depth. 751 

Figure 6. Vertical distribution of the eukaryotic plankton community. (a) Mean number of 752 

operational taxonomic units (OTUs) detected in each depth layer. The upper axis and bar graph 753 

represent OTUs of all eukaryotic plankton communities, and the lower axis and line plots 754 

represent OTUs of each taxon. (b) Distribution of oceanic plankton communities among different 755 

depths. 756 

Figure 7. Taxonomic compositions of Alveolata operational taxonomic units (OTUs) and related 757 

sequences detected by 18S rRNA gene metabarcoding using high-throughput sequencing. 758 

Figure 8. Taxonomic compositions of Rhizaria operational taxonomic units (OTUs) and related 759 

sequences detected by 18S rRNA gene metabarcoding using high-throughput sequencing. 760 
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Figure 9. Cluster dendrogram of Alveolata and Rhizaria. Bray-Curtis similarity among the 761 

samples was calculated using log-transformed sequence abundance data. 762 

Figure 10. Distance-based redundancy analysis (dbRDA) ordination of Alveolata and Rhizaria 763 

communities. Each plot represents the samples collected from a specific depth. Bray-Curtis 764 

similarity among the samples was calculated using log-transformed sequence abundance data. 765 

The dbRDA was constrained by best-fit explanatory variables from a distance-based multivariate 766 

linear model (DistLM). In the dbRDA ordination, axes indicate percentage variation, in terms of 767 

total community structure, and vector overlays indicate the strength and direction of relationships 768 

between individual variables and axes. 769 

 770 

Figure S1. Vertical profiles of the chemical environmental variables in the survey area. 771 

Figure S2. Numbers of operational taxonomic units (OTUs) in Alveolata communities at 772 

different depths. 773 

Figure S3. Relative abundance of Alveolata community sequences at different depths. 774 

Figure S4. Numbers of operational taxonomic units (OTUs) in Rhizaria communities at different 775 

depths. 776 

Figure S5. Relative abundance of Rhizaria community sequences at different depths. 777 
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0.0001 
16.5  
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0.0001 
9.0  
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0.0001 
13.3  
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0.0001 
12.8  

Station 
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0.0001 

10.4  
 

- 
- 
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