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An assessment of the abundances and their trends is urgently needed for the conservation and management of fishery-targeted and rarely seen 
cetacean species (FTCS and RSCS, respectively); however, such assessment is often challenging because of the paucity of a v ailable data. In 
particular, the number of sightings is smaller than the general requirement for the reliable estimation of a detection function, and the spatial 
co v erage of many cetacean surveys is insufficient. To address these issues, we propose a Bayesian approach that uses the previous abundance 
estimation of the same species or a species with similar biological traits as prior inf ormation. T heref ore, w e obtained the latest abundance 
estimates for six FTCS and two RSCS. For FTCS, we also estimated abundance trends by fitting an exponential population dynamics model with 
random effects accounting for interannual changes in animal distributions to the posterior samples of the B a y esian abundance estimates. Our 
approach enables us to (1) facilitate stakeholders’ consensus by maintaining previously agreed abundances while updating the conservation 
information; (2) identify the species of greater concern and prioritiz e conserv ation eff orts to w ards those species; and (3) monitor the abundance 
and trends of data-limited cetacean species. 
Keywords: bayesian modelling, data-limited stock assessment, dolphin fisheries, line transect, management and conservation, random effect, stan, template 
model builder (tmb). 

 

 

c
v  

r
o
l  

I
t
p
p  

2  

h
s
a  

a
a
t  

e
e  

f
i
F

o
l  

2

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/6/1643/7192207 by N
ational R

esearch Institute of Far Seas Fisheries, Fisheries R
esearch Agency user on 07 M

a

Introduction 

The determination of the abundances of marine mammal 
populations and their trends is urgently needed, to provide 
fundamental knowledge indispensable for conservation and 

management, particularly for fishery-targeted cetacean species 
(FTCS) and rarely seen cetacean species (RSCS; e.g. threat- 
ened species and species with low abundance). However, ro- 
bust estimations of the abundance of marine mammals are 
often challenging. Many marine mammal species are not fre- 
quently encountered, and sufficient funding and human re- 
sources are required to survey their wide, and sometimes 
oceanwide, distributions. Such a data-limited situation is of- 
ten encountered during the assessment of fisheries and wildlife 
populations (Chrysafi and Kuparinen, 2015 ; Dowling et al.,
2019 ; Punt et al., 2021 ). The abundance of cetaceans inhabit- 
ing open oceans is primarily estimated using the line-transect 
sampling technique (Hammond et al., 2021 ). The core part of 
the line-transect analysis consists of the estimation of the de- 
tection, which is probability dependent on the perpendicular 
distance between the observer and the detected schools us- 
ing a so-called detection function (Buckland et al., 2001 ). At 
least 60–80 sightings are required to estimate detection func- 
tion reliably (Buckland et al., 2001 ); however, this require- 
ment was not met in many field samplings of cetaceans be- 
cause of the infrequency of their encounters (e.g. Kanaji et al.,
2018 ). 
Received: 21 September 2022; Revised: 18 May 2023; Accepted: 20 May 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
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Delphinidae is the most diverse living family among 
etaceans and comprise 37 species according to the latest 
ersion of the Society for Marine Mammalogy List of Ma-
ine Mammal Species and Subspecies (Committee on Tax- 
nomy, 2022 ). Among them, most oceanic delphinids are 
isted as being “Least Concern” on the latest version of the
UCN Red List, although some species assessments included 

he caution that the current listing should be considered 

rovisional (pending) based on difficulties in detecting the 
opulation trend because of insufficient data (e.g. Braulik,
018 ; Kiszka and Braulik, 2018a ). Even for species listed as
aving “considerable abundance”, a lack of sufficient time- 
eries of abundance estimates needs to be resolved (Kiszka 
nd Braulik, 2018b ). The low frequency of surveys at an
dequate ecological scale restricts the depth of time-series; 
nd consequently, the statistical power to precisely evaluate 
he trends. Particularly in the coastal waters off Japan, sev-
ral delphinid species are currently targeted by dolphin fish- 
ries and thus a current population status needs to be care-
ully monitored (Kasuya, 2017 ). Nevertheless, recent trends 
n their abundances have not sufficiently evaluated for these 
TCS. 
Line-transect surveys aimed at estimating the abundance 

f small cetaceans, mainly delphinid species, were first estab- 
ished in 2006–2007, with the second phase taking place in
014–2015 in the waters covering Japan’s exclusive economic 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/by/ 4.0/ ), which permits unrestricted 
is properly cited. 

y 2024

https://orcid.org/0000-0001-6954-6261
https://orcid.org/0000-0001-7116-6743
mailto:kanaji_yu96@fra.go.jp
https://creativecommons.org/licenses/by/4.0/


1644 Y. Kanaji et al. 

125 130 135 140 145

25

30

35

40

2019

2020

2021

common bottlenose dolphin

125 130 135 140 145

25

30

35

40

2019

2020

2021

Risso's dolphin

125 130 135 140 145

25

30

35

40

2019

2020

2021

short−finned pilot whale

125 130 135 140 145

25

30

35

40

2019

2020

2021

rough−toothed dolphin

125 130 135 140 145

25

30

35

40

2019

2020

2021

pantropical spotted dolphin

125 130 135 140 145

25

30

35

40

2019

2020

2021

melon−headed whale

125 130 135 140 145

25

30

35

40

Longitude (°E)

La
tit

ud
e 

(°
N

)

A

B

CD

E

Figure 1 . Trac k lines of the latest surv e y s (Fisheries R esearch and Education A gency Cetacean Sighting Surv e y , FRACSS) conducted in 20 19–2021 and 
sighting positions of six FTCS. The survey area was stratified into five blocks, A (18890.89 square nautical miles, nmi 2 ), B (44095.38 nmi 2 ), C (182656.36 
nmi 2 ), D (213731.42 nmi 2 ), and E (120949.01 nmi 2 ). 
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one off the Pacific coast and around the southwestern islands
n the form of a small cetacean survey programme ( Figure 1 ),
he Japan Fisheries Research and Education Agency Cetacean
ighting Survey (JAFRACSS; Kanaji et al., 2018 , 2021 ). Based
n these surveys, the time-series of abundance estimates for
TCS, i.e. the common bottlenose dolphin ( Tursiops trunca-
us ), Risso’s dolphin ( Grampus griseus ), the southern form of
hort-finned pilot whale ( Globicephala macrorhynchus ), the
ough-toothed dolphin ( Steno bredanensis ), the pantropical
potted dolphin ( Stenella attenuata ), and the melon-headed
hale ( Peponocephala electra ), were published by Kanaji et al.

2018) . Dolphins are often encountered in large schools; thus,
he total number of encountered schools tends to be much
maller than the total counts of individual animals. For almost
ll species, the number of schools encountered during these
urveys was < 60 in each single year, which was insufficient
or the robust estimation of the detection function. In Kanaji et
l. (2018) , to estimate the detection function, the survey data
rom these two phases were pooled, followed by additional
ombination with data from the other surveys in 1985 and
992 that did not specifically target delphinid species. Year-
elated effects were included as additional covariates into the
etection function (e.g. Kanaji et al., 2018 ). Such treatment of
haring the information across the different survey years was
n effective compromise to estimate the abundance of species
hat are less frequently encountered, such as delphinids off
he coast of Japan. However, the combination and pooling
f new data obtained from the recent surveys with past data
ould cause another difficulty, because updating the detec-

ion function simultaneously implies updating the past abun-
ance estimates. Combining the data and updating the model
ould be useful for reducing uncertainty in abundance esti-
ations and modifying the management direction in terms of

daptive management (Hilborn and Walters, 1992 ). However,
he current management decision was established based on
he past assessment of abundance. Updating the recent abun-
ances and modifying the management and conservation di-
ections while retaining previous analytical results might be
n option towards constructive argumentation among stake-
olders with different interests. This practical approach is ex-
ected to promote the establishment of a consensus among
takeholders more easily, because they could keep previously
greed abundances while engaging in debate based on newly
btained information. 
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Recently, Bayesian modelling has been widely used in line- 
transect analyses because it offers numerous benefits for as- 
sessing animal abundance (Eguchi and Gerrodette, 2009 ; Ger- 
rodette and Eguchi, 2011 ). Differentiating the formulae is 
often difficult for complicated hierarchical model in the 
context of conventional maximum likelihood approaches. 
Bayesian frameworks can more explicitly deal with the hi- 
erarchical structures in line-transect analyses and permit the 
simultaneous estimation of all parameters from several mod- 
elling components through variance propagation (Eguchi and 

Gerrodette, 2009 ; Pardo et al., 2015 ; Kanaji and Gerrodette,
2020 ). Probabilistic inference derived from Bayesian methods 
permits direct use of the results in decision making (Punt and 

Hilborn, 1997 ). In terms of the assessment of data-limited 

populations, the Bayesian approach offers the benefit of be- 
ing able to incorporate prior information based on historical 
datasets or expert knowledge (Punt and Hilborn, 1997 ). Even 

when a sufficient number of samples are not obtained from 

a single-year survey, such as that observed for FTCS, we can 

construct models using prior information from the parame- 
ters of a previous abundance estimation, and the uncertainty 
caused by the small sample size could be taken into posterior 
distributions. This approach would also be beneficial for the 
assessment of the abundance of RSCS. If neither previous in- 
formation nor expert knowledge exist, it would be practical 
to borrow prior information from a closely related species or 
a species with similar appearance and behaviour. Borrowing 
important parameters from extensively studied species with 

a similar life history has been relatively commonly used for 
stock assessment in the setting of data-limited fisheries (Punt 
et al., 2011 ; Chrysafi and Kuparinen, 2015 ). 

Information of temporal trends in the population abun- 
dance is important particularly for conserving and managing 
of FTCS, because it is needed to assess how human-cause mor- 
tality affects entire population status (Wade, 1998 ; Punt et al.,
2020 ). For the situation in small sample size and relatively 
large uncertainty in time-series abundance estimates, fitting a 
simple population dynamics model to the time-series of pop- 
ulation abundances with prior information might be an effec- 
tive solution to estimate recent trends (Authier et al., 2020 ; 
Kanaji et al., 2021 ). However, in many cases, entire popula- 
tion abundance itself cannot be obtained for each single year 
because of wide distribution ranges of many cetacean species 
(Skaug et al., 2004 ; Hakamada et al., 2017 ). For example, in 

the past surveys of JAFRACCS, three vessels simultaneously 
covered different survey blocks. Despite such efforts, it was 
difficult to survey many blocks in the management area suf- 
ficiently in a single year. In the latest programme deployed in 

2019–2021, only one vessel was involved, and 3 years were 
required to completely survey the entire area. In the dynamic 
ocean environment, cetacean habitat could shift year to year,
which potentially cause uncertainty in total (combined) abun- 
dance estimates (see Appendix 1). International authorities 
on marine mammal conservation and management (e.g. In- 
ternational Whaling Commission and North Atlantic Marine 
Mammal Commission) has recommended to assess such ad- 
ditional variance to the abundance estimates from multi-year 
surveys (Øien, 2009 ; Matsuoka et al., 2011 ; Solvang et al.,
2015 ; Leonard and Øien, 2020 ). A standard procedure for this 
purpose has been established by Skaug et al. (2004) , in which 

a simple exponential-growth population dynamics model is 
fitted to the nominal abundances from different blocks/years 
with random effects accounting for distribution changes. 
The objectives of this study are twofold. The first objective
as to estimate the latest abundances of both FTCS and RSCS
sing Bayesian line-transect analyses with prior information 

rom the previous abundance estimation of the same species 
r species with similar biological traits. The third-phase small
etacean survey, which was a part of the JAFRACSS pro-
ramme, was completed in 2019–2021 and covered survey 
reas that were almost the same as those assessed in the
rst and second phases ( Figure 1 ). The abundances of the
ollowing eight species were estimated using this approach: 
ommon bottlenose dolphins, Risso’s dolphins, short-finned 

ilot whales, rough-toothed dolphins, pantropical spotted 

olphins, melon-headed whales, Fraser’s dolphins ( Lagen- 
delphis hosei ), and pygmy killer whales ( Feresa attenuata ).
or short-finned pilot whales, only southern forms were 
argeted for the study. The main habitat of the northern forms
s outside of the study area and the northern forms are easily
nd visually identified by their white saddle patch (Kanaji et
l., 2011 ). The former six species are FTCS mentioned above,
hereas the latter two species are RSCS for which abundance
ad not been assessed previously. The second objective was to
stimate abundance trends by using abundance estimates with 

patially partial coverages. Here, we developed a simple pop- 
lation dynamics model with random effects for distribution 

hanges using posterior samples of Bayesian abundance esti- 
ates as input data as in Skaug et al. (2004) . This approach

nables us to appropriately deal with large uncertainties 
aused by spatiotemporal variation by utilizing all abundance 
nformation from different years/blocks. Only FTCS was 
argeted for this analysis, because assessing the effect of 
irect catch is particularly required for these species. Even if
rend is estimable, its validity cannot be assessed because of
 lack of supplementary information such as catch statistics
nd distribution patterns for RSCS. For these estimated 

bundances and trends, we discussed the future directions 
f the conservation and management of delphinid species,
oth FTCS and RSCS, in the waters off the Pacific coast of
apan. 

aterial and methods 

ield data (FTCS) 

ighting surveys dedicated to delphinid species were con- 
ucted in the areas off the Pacific coast of Japan and around
he southwestern islands ( Figure 1 ). The entire area was di-
ided into five blocks (A–E). These blocks were originally
esigned to cover the main habitat of bottlenose dolphins 
Kanaji et al., 2022 ) and southern short-finned pilot whales
Kanaji et al., 2015 ), and the total abundance across these
locks has been used for the management and assessment of
he six delphinid species (Kanaji et al., 2018 ). Survey cruises
ere carried out three times in different years. RV Kaiyo-maru
o. 7 (649 GT, Kaiyo Engineering Co., Ltd) was used in all
 years, albeit using different equipment from that employed 

n some of the past surveys, as discussed below. These cruises
overed blocks A and D from 21 May to 8 July 2019; blocks B
nd E from 19 May to 6 July 2020; and block C from 1 to 28
une 2021, respectively ( Figure 1 ). The same block design has
een used in small cetacean surveys since 2006 (Appendix 2;
upplementary Figure S1). The configuration of transect lines 
as designed using the “equal spaced zig-zag” option in the 
istance software, version 7.3 (Thomas et al., 2010 ). 



1646 Y. Kanaji et al. 

125 130 135 140 145

25

30

35

40

2006−2007
2006
2007

125 130 135 140 145

25

30

35

40

2014−2015
Fraser's dolphin

2014
2015

125 130 135 140 145

25

30

35

40

2019−2021
2019
2020
2021

125 130 135 140 145

25

30

35

40

2006−2007
2006
2007

125 130 135 140 145

25

30

35

40

2014−2015
pygmy killer whale

2014
2015

125 130 135 140 145

25

30

35

40

2019−2021
2019
2020
2021

Longitude (°E)

La
tit

ud
e 

(°
N

)

Figure 2. Track lines of the past (2006, 2007, 2014, and 2015) and latest FRACSS programmes (2019–2021) and sighting positions of two RSCS. Some 
surv e y blocks were further divided into two or more subblocks in the past surveys. 
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The vessel ran on the transect lines at ∼11.5 knots
 ≈21.3 km h 

−1 ), to mitigate the impact on the animal’s swim-
ing behaviour (Buckland et al., 2001 ), and two experienced
bservers searched for marine mammals within an area cov-
ring from left abeam ( −90 

◦ from the track line) to right
beam (90 

◦) using binoculars (7 × 50) from the top of a barrel
laced at 18 m above the water line. The search was continued
henever weather conditions permitted (Beaufort scales = 4.0
r lower) during the daytime in the survey periods. When
etacean schools were encountered, the observers estimated
he radial distance and the angle from the vessel to the de-
ected schools using scaled binoculars and an angle board. A
losing mode was adopted for JAFRACSS small cetacean sur-
eys; therefore, the vessel approached the detected cetacean
chools to identify species and estimate school size. 

ield data (RSCS) 

n addition to the dataset from the latest surveys mentioned
bove, we used the past survey data collected from 2006 to
015 ( Figure 2 ). The abundances of Fraser’s dolphins and
ygmy killer whales have not been estimated to date because
heir sample sizes in each single year were too small. There-
ore, we pooled the data from the past and latest surveys to
stimate the detection function and mean school size. Fraser’s
olphins were encountered in blocks C and D (only in the
orthern subblock) in 2007; blocks C, D, and E in 2014; and
locks B, C, and D in 2019–2021. In contrast, pygmy killer
hales were encountered in block D (only in the southern

ubblock) in 2007; and in block E in 2014, 2015, and 2020
 Figure 2 ). The survey protocol used in the past surveys was
dentical to the latest one. Details of the standard data collec-
ion methods used in the JAFRACSS small cetacean surveys
re provided in Kanaji et al. (2018) . 

asic line-transect formulae 

e adopted a standard line-transect approach for estimating
bundance (Buckland et al., 2001 ). The following two types
f detection functions were considered to fit to perpendicular
istances: 

Half − normal : g ( x i ) = exp 

( 

− x 

2 
i 

2 σ 2 
i 

) 

, (1)

Hazard − rate : g ( x i ) = 1 − exp 

( 

−
(

x i 

σi 

)−θ
) 

, (2)

here x i is the perpendicular distance of the i -th sighting cal-
ulated by simple trigonometry from the recorded angle and
adial distance. A scale parameter σi is estimated for the half-
ormal model, while shape parameter θ as well as σi are esti-
ated for the hazard-rate model. Here, we considered multi-

ovariates into the detection function, so that σi is expressed as
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Table 1. The past abundances for six delphinid species estimated by Kanaji et al. (2018) . 

Species Year A B C D E 

Common bottlenose dolphin 2006 8 021 (0.85) 2 673 (0.97) - (-) 0 (-) 34 811 (0.57) 
2007 0 (-) 4 283 (0.76) 14 198 (1.14) 6 122 (0.98) - (-) 
2014 0 (-) 3 535 (0.98) 0 (-) 0 (-) 40 994 (0.59) 
2015 - (-) - (-) - (-) - (-) 15 982 (0.70) 

Risso’s dolphin 2006 1 091 (0.76) 15 812 (0.39) - (-) 5 001 (0.75) 17 894 (0.41) 
2007 6 961 (0.57) 16 272 (0.41) 13 612 (0.79) 3 876 (1.03) - (-) 
2014 5 805 (0.57) 28 956 (0.35) 35 417 (2.00) 12 939 (0.47) 61 046 (1.02) 
2015 - (-) - (-) - (-) - (-) 6 133 (0.83) 

Short-finned pilot whale 2006 808 (1.19) 0 (-) - (-) 11115 (0.55) 17 483 (0.48) 
2007 0 (-) 1 899 (0.57) 11 688 (0.89) 0 (-) - (-) 
2014 0 (-) 1 533 (0.79) 6 877 (1.29) 11 305 (0.55) 11 853 (1.34) 
2015 - (-) - (-) - (-) - (-) 4 032 (0.83) 

Rough-toothed dolphin 2006 0 (-) 299 (0.95) - (-) 4 309 (0.60) 0 (-) 
2007 0 (-) 0 (-) 5 606 (0.68) 451 (1.05) - (-) 
2014 0 (-) 1 769 (0.85) 0 (-) 3 260 (1.76) 0 (-) 
2015 - (-) - (-) - (-) - (-) 9 531 (0.82) 

Pantropical spotted dolphin 2006 0 (-) 3 678 (0.67) - (-) 92 781 (0.56) 11 676 (0.55) 
2007 0 (-) 3 596 (0.90) 36 322 (0.56) 27 481 (0.44) - (-) 
2014 0 (-) 11 086 (0.51) 58 003 (0.52) 54 488 (0.55) 7 141 (0.79) 
2015 - (-) - (-) - (-) - (-) 18 967 (0.85) 

Melon-headed whale 2006 0 (-) 0 (-) - (-) 18 557 (0.63) 17 525 (0.52) 
2007 0 (-) 5 436 (0.70) 20 075 (0.60) 17 901 (0.57) - (-) 
2014 0 (-) 2 627 (0.85) 29 452 (0.68) 19 367 (0.56) 5 076 (0.94) 
2015 - (-) - (-) - (-) - (-) 0 (-) 
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a linear combination of covariates that potentially affect the 
detection probability, such as weather conditions and school 
size (Marques and Buckland, 2003 ), 

σi = exp ( αz i ) , (3) 

where z i is a vector of multi-covariates (the first component is 
always one) and α is a vector of coefficients that indicate the 
effect of corresponding covariates. 

The integration of the detection function g ( x ) over x rep- 
resents the effective strip half-width ( w ) within which all an- 
imals are perfectly detected if all assumptions are met (Buck- 
land, ). Thus, the total abundances in the j -th block ( ˆ N j ) and 

year y can be obtained as follows, 

ˆ N j,y = 

A j ̂  n j,y ̂  s j,y 
2 L j,y ˆ w j,y 

, (4) 

where A j and L j , y are the area and total length surveyed in 

block j and year y . The probability of detection on a track 

line, g (0), was assumed to be 1.0 for all species, as assumed 

in our previous analyses (Kanaji et al., 2018 ). The observed 

school sizes are likely larger in larger perpendicular distances; 
thus, the corrected mean school size ( ̂ s j ) was estimated via 
regression of the school size on the detection function g ( x ). 

λi = exp ( a 1 + a 2 g ( x i ) ) , (5) 

s i − 1 ∼ Negative binomial ( λi , φλ) . (6) 

School sizes ( s i ) minus 1 are assumed to follow a negative bi- 
nomial distribution with the mean λi and the dispersion pa- 
rameter φλ. The dispersion parameter φλ allows for highly 
variable dolphin school sizes generally ranging from one to 

several hundred individuals (Kanaji and Gerrodette, 2020 ).
The encounter rate ( n j,y,k /L j,y,k ) was modelled as follows, 

μ j,y,k = exp 

(
b j,y + log 

(
L j,y,k 

))
, (7) 

n j,y,k ∼ Poisson 

(
μ j,y,k 

)
, (8) 
b j,y ∼ Normal 
(
βb , σ

2 
b 

)
, (9) 

here the expected encounter rate in specific block j in year y
as parameterized as random intercept b j,y . This random ef-

ect enables us to naturally estimate abundance in the blocks
ithout any sightings, because no sightings are not necessarily 

quivalent to zero animals inhabiting the block. Here, the sam-
ling unit was a track line deployed in each block, so that n j,y,k 
nd L j,y,k represent the number of encountered schools and 

rack line length, respectively, at the k -th track line in block
 . Parameters for all these models were estimated within a
ayesian framework. The Bayesian posterior probabilities for 
ll parameters were sampled from Hamiltonian Monte Carlo 

HMC), which is a family of Markov chain Monte Carlo
MCMC) algorithms, using Stan version 2.19.2 (Stan Devel- 
pment Team, 2020 ) and the R interface “Rstan”. The numer-
cal integration of the detection function from x = 0 to 3 miles
as made based on the 15-points Gauss–Legendre quadra- 

ure (Golub and Welsch, 1969 ; Smyth, 1998 ). The nodes and
eights were generated using the R function “gauss.quad” in 

he package “statmod” (Smyth et al., 2022 ). We ran the model
ith three chains, each consisting of 30000 iterations with 

 burn-in of 10000 and retained every tenth value. All these
nalyses were done separately by species. 

rior information (FTCS) 

o estimate the model parameters in the multi-covariate de- 
ection functions for FTCS, we used previously estimated pa- 
ameters and the covariance matrices as informative prior dis- 
ribution ( Table 1 ). Here, we assumed a multivariate normal
istribution for the prior detection parameters. According 
o the previous analyses, a half-normal model was used for
ough-toothed dolphins and a hazard-rate model was used 

or the remaining five FTCS (i.e. common bottlenose dolphins,
isso’s dolphins, short-finned pilot whales, pantropical spot- 

ed dolphins, and melon-headed whales; Kanaji et al., 2018 ).
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he Beaufort scale was taken as a covariate that significantly
ffected the detection probability for Risso’s and spotted dol-
hins, whereas vessel type was adopted for rough-toothed
olphins (Kanaji et al., 2018 ). Vessel type is among the im-
ortant covariates that potentially affect detection probabil-
ty. Although several vessels were used in the past and latest
urveys of the JAFRACCS programme, they were typically
ategorized into two vessel types (former whaling vessel or
ulti-use research vessel), both of which were equipped with
 top barrel; however, whaling-type vessels were previously
nvolved in commercial whaling, and thus their crews were
onsidered more experienced for cetacean surveys. The
esearch-type vessel RV Kaiyo-maru No. 7 was used in the
urveys performed in 2019–2021. The vessel’s equipment was
enerally similar to that of the research-type vessels used in
he previous surveys (e.g. the height of the observation plat-
orm, speed while approaching the encountered schools and
rews experience). No covariates were considered for estimat-
ng the detection functions of common bottlenose dolphins,
hort-finned pilot whales, and melon-headed whales based on
he previous knowledge. On the other hand, Beaufort scale is
ften an important covariate, which affects a detection prob-
bility (Buckland et al., 2001 ), so that we additionally incor-
orated the Beaufort scale for these three species, and com-
ared the models with/without a covariate based on widely
pplicable information criterion (WAIC; Watanabe, 2013 ).
e also tested the model with the Beaufort scale covariate for

ough-toothed dolphins. For school size regression, the previ-
us estimates and covariance matrices by Kanaji et al. (2018)
ere also used as multivariate normal prior data for param-

ter combination of a 1 and a 2 for the six FTCS mentioned
bove. This approach was reasonable because the ranges of
he data collected in 2019–2021 were generally within those
sed in Kanaji et al. (2018) (Appendix 2; Supplementary Fig-
re S2). The data from the surveys not specifically targeted
mall cetaceans were additionally combined to estimated de-
ection functions in the previous analyses, so that priors used
ere included information from the surveys since 1985. How-
ver, the designs of track lines and blocks before 2006 were
uite different from recent JAFRACCS small cetacean survey.
e have not used data before 2006 for further analyses. Non-

nformative uniform priors were used for the parameter βb 
nd uniform priors with wide intervals (0 −100) were used
or σb in the encounter rate model. 

rior information (RSCS) 

e had no prior information on the parameters of abun-
ance estimation models for two RSCS, Fraser’s dolphins and
ygmy killer whales; thus, we borrowed prior distributions
rom FTCS to construct line-transect models of these RSCS.

e first chose three candidate models (models M1–M3) based
n the similarity criteria in the ecological traits of the six
TCS to each RSCS: body shape (appearance), body size,
nd school size, and then compared these models based on
AICs. The appearance of Fraser’s dolphins, with a grey-

oloured body and a short beak, resembles closely those of
ommon bottlenose dolphins (M1). Their mean body mass
95.4 kg (females) and 95.4 kg (males)] was closer to that
f melon-headed whales (M2) [105 kg (females) and 104 kg
males); Trites and Pauly, 1998 ]. The mean value of the ob-
erved school size was closer to that of pantropical spotted
olphins (M3; see the Results section). Therefore, we used
ultivariate normal priors of these three FTCS for Fraser’s
olphins for the parameters of both detection functions (equa-
ions 1 and 2). Pygmy killer whales have a medium-sized body
nd a rounded head, and their appearance closely resembles
hat of melon-headed whales (M1). Their mean body mass
78.0 kg (females) and 117 kg (males)] was closer to that of
ough-toothed dolphins (M2) [87.7 kg (females) and 96.3 kg
males); Trites and Pauly, 1998 ]. The mean and range of the
bserved school size were closer to those of Risso’s dolphins
M3; see the Results section). Multivariate normal priors of
hese three FTCS were used for pygmy killer whales. All co-
ariates included in the original models were considered for
SCS, whereas the covariate of vessel was not used for pygmy
iller whales. No pygmy killer whale sightings were reported
rom the whaling-type vessels during the past surveys. For the
stimation of mean school size, non-informative priors were
sed without linear regression, because neither of the two
pecies showed a clear tendency for an association between
chool size and perpendicular distance (Appendix 2; Supple-
entary Figure S2). Similar to FTCS, uniform priors were used

or the parameter βb and σb in the encounter rate model. 

rend analysis and PBR 

o evaluate additional variances for multi-year surveys, we
ssumed an exponential population growth to evaluate addi-
ional variances according to Skaug et al. (2004) . A simple
dea to fit a population dynamics model to partial abundance
stimates from multi-year surveys is to combine abundance
stimates from different years/blocks and treat it as if from en-
ire population size in a single year . However , our simulation
ests (Appendix 1) show that such approach could not esti-
ate abundance trend precisely because the assumption that

he abundance combined from different years represents the
otal abundance in a single year is incorrect. Additional ran-
om effect term is needed to account for year-to-year changes
n animal distributions. Background ideas and simulation tests
or the random effects model are summarized in Appendix 1.

Let the total abundance within the blocks A–E in 2014 be
 

tot 
2014 ; then, the total abundance in year y is given by: 

log 
(
N 

tot 
y 

)
= log 

(
N 

tot 
2014 

) + ( y − 2014 ) · log ( R ) , (10)

here R is the rate of growth (or decline) in population abun-
ance. Total abundance covering entire study areas were not
btained except for 2014, because we spent 2–3 years to com-
lete surveying all five blocks and have abundance estimates
nly from 1 to 4 blocks in 2006, 2007, 2015, 2019, 2020,
nd 2021, respectively (Appendix 2; Supplementary Figure
1). Here, the total abundance N 

tot was parameterized to the
ear 2014 when all five blocks were completely surveyed in a
ingle year. The theoretical maximum population growth rate
s often considered to be 4% (Wade, 1998 ), and those esti-
ates were reported ∼3–4% from the field surveys for del-
hinid species (Kasuya, 1976 ; Olesiuk et al., 1990 ; Mannocci
t al., 2012 ). Currently, the annual catch limit for FTCS is up
o 1% of the latest abundance (Kanaji et al., 2021 ), whereas
ther sources of mortality (e.g. environmental changes, com-
etition, diseases, ship strike, etc.) might also cause decreases
n abundance. Here, we assumed 0.95 and 1.04 as the lower
nd upper bounds for R , respectively (i.e. −0.051 and 0.039
or min and max log R ). Any prior information other than
pper and lower limits was not given for R . 
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We randomly sampled 5000 sets of abundances using 
means and CVs of previous estimates by Kanaji et al. (2018) .
The 5000 sets of abundances were also randomly sampled 

from posterior distributions of those for 2019–2021, and the 
sum of sampled abundances in the blocks A–E was used as 
the total abundance in 2020. Individual draws from the pos- 
terior distribution of abundance estimates ( ˆ N 

samp 
y ) were fitted 

to the above exponential model using the following Poisson 

distribution. Year-to-year changes into their spatial distribu- 
tion are introduced using the random effects parameter ξy, j . 

p y, j = 

exp 

(
δ j + ξy, j 

)
∑ 

j exp 

(
δ j + ξy, j 

) , (11) 

where the fixed-effects parameter δ j accounts for the relative 
importance among the blocks in the reference year, and the 
random-effects parameter ξy, j accounts for the overdispersion 

caused by interannual changes in dolphin distributions from 

that year (Skaug et al., 2004 ). We set the reference year to 

2014; thus, ξ2014 , j was assumed to be zero for all block j , be- 
cause we had the most sufficient information on abundances 
and their variations among the blocks in that year. For the 
other years in which some blocks had not been surveyed, we 
assumed that ξy, j follows a normal distribution with a mean 

of 0 and a variance parameter σ 2 , the so-called the additional 
variance (Skaug et al., 2004 ). Sampled abundances in block j 
and year y were assumed to follow a Poisson distribution. 

ˆ N 

samp 
y, j ∼ Po isso n 

(
p y, j N 

tot 
y 

)
. (12) 

The reason why we used Poisson was that several species 
had zero abundance estimates in specific blocks and years 
in the previous estimates (Kanaji et al., 2018 ), and a Pois- 
son distribution naturally models zero observations. Unex- 
plained overdispersion by Poisson distribution was expressed 

by a random effect with additional variance σ 2 . To fit the Pois- 
son model to 

ˆ N 

samp 
y, j , the values obtained from the line-transect 

analysis were simply rounded off to the nearest integer. These 
analyses were considered for FTCS exclusively. Because the 
abundance estimates of RSCS are zero in many blocks and 

years, there will remain substantial variations that cannot be 
estimated from the mixed-effect models. We used a Laplace 
approximation for estimating trend models using the template 
model builder (TMB, Kristensen et al., 2016 ), because a much 

faster computation approach is desirable for repetitive evalu- 
ations. 

We calculated potential biological removal (PBR) using 
the total abundances by simply combining from different 
blocks/years and those by above additional variance models.
PBR is defined as: 

PBR = N MIN 

1 

2 

R MAX 

F R 

, (13) 

where N MIN 

is the 20th percentile of abundance estimates,
R MAX 

is the intrinsic growth rate, and F R 

is the recovery fac- 
tor (Wade, 1998 ). The default parameters provided by Wade 
(1998) , R MAX 

= 0 . 04 and F R 

= 0 . 5 , were used to calculate 
PBR. 

Results 

Block-specific abundances (FTCS) 

During the survey period of 2019–2021, a total of 31 track 

lines of 3913.71 nautical miles (nmi) were surveyed; 415.42 
mi in block A, 973.28 in B, 861.82 in C, 982.06 in D, and
81.13 in E. Within these areas, a total of 13, 37, 18, 6, 11,
nd 5 school sightings were recorded for common bottlenose 
olphins, Risso’s dolphins, short-finned pilot whales, rough- 
oothed dolphins, pantropical spotted dolphins, and melon- 
eaded whales, respectively ( Table 2 ). Theoretically, the de-
ection probability is expected to be higher when a school is
ighted close to the track line, whereas it decreases with in-
reasing perpendicular distance. However, the current dataset 
id not show this typical tendency because of the insufficient
umber of sighting records for a few species (e.g. pantrop-
cal spotted dolphins and melon-headed whales, Figure 3 ).
hus, we used species-specific detection functions previously 
btained as prior information. After 30000 iterations, the 
odels sufficiently converged with the Gelman–Rubin statis- 

ic ˆ R smaller than 1.1 for all estimated parameters (Gel- 
an et al., 2014 ). For common bottlenose dolphins, short-
nned pilot whales, and melon-headed whales, the models 
ith/without the Beaufort scale covariate were compared 

ased on WAIC. By adding the covariate, WAIC was im-
roved from 188.2 to 187.7 for common bottlenose dolphins.
or short-finned pilot whales and melon-headed whales, on 

he other hand, WAICs for the models without the Beaufort
cale covariates were 251.3 and 99.4, respectively, still smaller
han 253.2 and 103.7 for the models with the covariates.
he model with the vessel-type covariate was 83.1 for rough-

oothed dolphins, while 85.9 for the model with Beaufort scale
ovariate. 

The posterior distributions of important parameters are 
ummarized in Table 2 and Figure 4 . The effective strip half-
idth tended to be smaller for Risso’s dolphins (0.40 nmi
hen Beaufort scale < 3 and 0.27 nmi at ≥ 3) and rough-

oothed dolphins (0.84 nmi), whereas those species exhibited 

elatively smaller school sizes than did the remaining species 
e.g. 13.1 for rough-toothed dolphins vs. 134.7 for melon- 
eaded whales; Table 2 ). Abundance was estimated for each
pecies, block and year using these parameters ( Table 2 ). The
bundance in the block with zero sightings were interpolated 

sing the random intercept of encounter rate model. The sim-
le sum of abundance estimates from different blocks and 

ears was 56714 (20344–149355) for common bottlenose 
olphins, 62033 (35662–107408) for Risso’s dolphins, 32175 

15851–62240) for short-finned pilot whales, 5261 (1656–
4088) for rough-toothed dolphins, 78358 (34011–166278) 
or pantropical spotted dolphin, and 57662 (14862–233036) 
or melon-headed whales. PBRs calculated for these estimates 
ere summarized in Table 2 . 

lock-specific abundances (RSCS) 

 total 12 school encounters of Fraser’s dolphins and five
chool encounters of pygmy killer whales were recorded since 
006. The medians of estimated effective strip half-width ( w )
f Fraser’s dolphins were 0.76 nmi using model M1 and 0.88
mi using model M2, respectively ( Table 3 ). The values ob-
ained using model M3 were 0.53 and 0.89 nmi, respectively,
or Beaufort scales < 3 and ≥ 3 ( Table 3 ). The medians of
he estimated w of pygmy killer whales were 0.66 and 0.28
mi, respectively, using models M1 and M2, whereas those 
btained using model M3 were 0.26 and 0.40 nmi, respec-
ively, for Beaufort scales < 3 and ≥ 3. The median school sizes
stimated using a negative binomial distribution were 108.1 

M2) to 111.0 (M1) for Fraser’s dolphins and 24.6 (M3) to
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5.2 (M2) ( Table 3 ). The ˆ R values for all estimated parame-
ers were smaller than 1.1 (Gelman et al., 2014 ). 

Table 3 summarizes the abundance estimates in respective
locks by three periods, 2006–2007, 2014–2015, and 2019–
021. For the blocks repeatedly surveyed in the successive
ears (e.g. block C in 2006 and 2007), averaged values were
hown as abundance in respective periods. Fraser’s dolphins
ere more frequently encountered in blocks C and D, whereas
o sightings were recorded in block A since 2006 ( Figure 2 ).
AICs were 225.3, 223.9, and 227.5, respectively, for M1–
3. Total abundances estimated by the lowest WAIC model,
2, were 18952 (6032–52717), 33643 (11899–112644), and

4548 (8523–76235) in 2006–2007, 2014–2015, and 2019–
021, respectively. Encounters of pygmy killer whales were
oncentrated mostly in block E, with the exception of block
 in 2007 ( Figure 2 ). Sightings were also recorded in block E

xclusively during the latest surveys, in 2019–2021. WAICs of
1–M3 were 79.0, 75.8, and 76.8, respectively. Total abun-

ances estimated by the lowest WAIC model, M2, were 4109
467–19042), 7590 (696–48757), and 5009 (493–26575) in
006–2007, 2014–2015, and 2019–2021, respectively. 

bundance trends of FTCS 

he exponential population dynamics model was fitted to
he abundance estimates with random effects to express
patiotemporal changes in animal distribution. The annual
hanges in abundance and their percentiles are illustrated
n Figure 5 . The trends in the total abundance of each
pecies are expressed as a simple exponential form, while
he block-specific abundances were fitted well with the orig-
nal data of abundance estimates using random effects.
bundances estimated by trend model showed much larger
ariances than original estimates, because additional vari-
nces were incorporated into them. Total abundances in
020 (mid-year of the latest surveys) for common bot-
lenose dolphins were 49762 (95% CI = 19043–175984
nd CVs = 0.67), 194676 (66310–764357 and 0.73) for
isso’s dolphins, 43585 (14274–274897 and 1.15) for short-
nned pilot whales, 11127 (2455–129460 and 2.21) for
ough-toothed dolphins, 152485 (54797–399938 and 0.53)
or pantropical spotted dolphins, and 73412 (23443–231995
nd 0.63) for melon-headed whales ( Table 4 ). The median R -
alues tended to be smaller for common bottlenose dolphins
han for other species ( Table 4 ). The probability of N 

tot 
2020 to

e larger than 95% of N 

tot 
2006 ( P 95 ) and that of 60% ( P 60 )

lso tended to be smaller for common bottlenose dolphins
 Table 4 ). PBR was 320 for common bottlenose dolphins,
187 for Risso’s dolphins, 230 for short-finned pilot whales,
1 for rough-toothed dolphins, 951 for pantropical spotted
olphins, and 442 for melon-headed whales ( Table 4 ). 

iscussion 

ata-limited abundance estimation for small 
etaceans 

n 2019–2020, the JAFRACSS small cetacean surveys spent
 total of 126 days covering the entire study areas (A–
). Despite such efforts, the number of school sightings did
ot meet the criterion for robust abundance estimation sug-
ested by Buckland et al. (2001) . Coping with such an is-
ue, the Bayesian approach can efficiently incorporate the ex-
sting knowledge into a probabilistic form, and update this
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Figure 3. Histograms of perpendicular distances obtained in the latest JAFRACSS surv e y (2019–2021). Open histogram is for Beaufort scale > 3, and 
filled histogram is for ≤ 3 when multi-covariate detection functions were applied. Solid lines and colour filled areas represent median and 95% credible 
intervals of posterior distributions (red for Beaufort scale > 3 and blue for ≤ 3 for multi-covariate detection functions). Dotted lines represent the best 
estimates of the detection functions by Kanaji et al. (2018) . 
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knowledge as new data become available (Chrysafi and Ku- 
parinen, 2015 ). Prior distributions for the parameters of de- 
tection functions were updated using the dataset obtained in 

the latest surveys, and these models provided the latest abun- 
dance estimates for these data-limited populations. For FTCS,
the shapes of the detection function tended not to be largely 
different from priors for many species ( Figure 3 ), which might 
indicate that the samples size was too small to update the 
probability distributions. Specifically, the prior and posterior 
distributions of parameters were almost identical in the detec- 
tion function of melon-headed whales ( Figure 4 ). Conversely,
considering the relatively large number of school sightings 
recorded for common bottlenose dolphins, Risso’s dolphins,
and short-finned pilot whales, it is possible that the probabil- 
ity distributions obtained from the latest data were actually 
similar to the previous ones. Regardless of the causes, com- 
bining the recent data into the past dataset through Bayesian 
pdating is a reasonable approach, because the past and lat-
st datasets were obtained for the same species and the same
eographic ranges and both surveys followed almost the same 
ampling protocols (e.g. vessel type, height of the observation 

latform, and binocular magnification, etc.). 
The detection functions of the two RSCS were also esti-
ated through Bayesian updating from the prior distribu- 

ions. However, we borrowed prior information from other 
mall cetacean species; thus, their reliability might be arguable.
n the case of Fraser’s dolphins, through Bayesian updating,
he shapes of the detection functions were clearly modified 

rom the prior distribution ( Figure 3b ). WAIC values were
maller in M2, but the posterior medians of effective strip
alf-width w became not largely different among the models 
M1: 0.76, M2: 0.88, M3: 0.89, when Beaufort scale < 3).
he abundance estimates tended to be larger in model 
3, because the effective half-width was smaller when the 
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(a) (b)

Figure 4. Prior (blue solid lines) and posterior distributions (histograms) of detection function ( θ , α0 , and α1 ) and school size regression parameters ( a 1 
and a 2 ). 
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eaufort scale ≥ 3 (median: 0.53). Nevertheless, those differ-
nces were not very large. The medians of total abundances es-
imated by the lowest WAIC model (M2) were 18952 (6032–
2717), 33643 (11899–112644), and 24548 (8523–76235) in
006–2007, 2014–2015, and 2019–2021, respectively ( Table
 ), which represented relatively small differences from the
ther models. Conversely, the posterior parameter of detec-
ion function did not change largely for pygmy killer whales,
uggesting an insufficient sample size for updating the infor-
ation and for the reliable estimation of the abundance. In

act, the estimated abundance varied substantially among the
odels. The medians of total abundances by the lowest WAIC
odel (M2) were 4109 (467–19042), 7590 (696–48757), and
009 (493–26575) in 2006–2007, 2014–2015, and 2019–
021, respectively, which were about two times larger than
stimates by M1 ( Table 3 ). 

For both FTCS and RSCS, we assumed perfect detection
n a track line [i.e. g (0) = 1], but this assumption might be
iolated by two primary causes: “availability bias”, which oc-
urs when animals are under the water and “perception bias”,
hich occurs when animals are available to be seen but missed
ue to fatigue or any other observation conditions (Laake
nd Borchers, 2004 ). Satellite telemetry data for diving be-
aviour and data from double platform survey will provide
nformation to evaluate availability and perception biases, re-
pectively. JAFRACSS small cetacean survey has not had any
rotocols to evaluate them, but a few studies from Japanese
ighting surveys estimated g (0) (Takahashi, 2019 ). Okamura
t al. ( 2012 ) analysed diving and surfacing records of tagged
aird’s beaked whales and estimated g (0) to be 0.78 for a sin-
le animal to 0.92 for a school of 30 animals. Using the data
rom double-platform surveys, Takahashi (2019) estimated
 (0) of minke whales to be 0.676 for the top barrel, 0.429 for
he independent observer (at a platform lower than the top
arrel), and 0.810 for the pooled platforms. Baird’s beaked
hales frequently make diving longer than 30 min (Okamura

t al., 2012 ), and Antarctic minke whales have relatively small
chool size (1–2 of mean school size; Hakamada et al., 2014 ).
n the other hand, the diving depth of delphinids are gen-

rally shallow and diving duration is short during the day-
ime (Scott and Chivers, 2009 ; Wells et al., 2009 ; Silva et al .,
016 ). School size is much larger than baleen whales ( Tables 2
nd 3 ). However, even if detection probability on the track line
s nearly 1 in fine weather, wind force may additionally affect
etectability (Barlow, 2015 ). Further consideration and data
ollection on g (0) will be needed for more precise abundance
stimation in our future work. 

Currently, all six FTCS mentioned above were managed
ased on PBR (Wade, 1998 ) in the waters off Japan. Al-
hough the government has set annual catch limit for all
TCS, dolphin fisheries remain controversial (Kasuya, 2007 ;
ail et al., 2020 ), and stakeholders from different standpoints
ften have extremely different opinions. Therefore, sharing
 more straightforward decision-making process and easy-
o-understand scientific information among all stakeholders
hould be a key to the conservation and management plan-
ing of FTCS. In this regard, updating the latest abundance is
 core scientific component. Here, we reported an approach to
stimate abundance using past information and limited data.
his does not mean that revision on the past abundance im-
edes proper decision-making. Collecting data and updating
ssessment would be rather appropriate direction in adap-
ive management (Hilborn and Walters, 1992 ; Hammond et
l., 2021 ). Standard approach would be combining the data
rom the past through the latest years and then reanalysing
hem and updating both the past and latest abundance
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Table 3. Simple mean of observed school sizes ( ̄s ) and posterior medians (and 95% credible intervals) for the important parameters, effective half-width 
( ̂  w ), estimated school size ( ̂ s ), encounter rate ( ̂ n / L ), and abundance ( ̂  N ) for two RSCS. 

ˆ N 
Species Model Year s̄ ˆ s ˆ w A B C D E Total 

Fraser’s 
dolphin 

M1 2006–2007 106.2 111.0 
(64.8–208.8) 

0.76 
(0.48–1.08) 

648 
(77–2191) 

1 351 
(150–4 180) 

7 796 
(1 404–
30 887) 

7 371 
(1 719–
21 800) 

4 438 
(984–

13 528) 

22 834 
(7 277–
61 715) 

2014–2015 622 
(35–2 650) 

1 338 
(70–5 173) 

10 567 
(2 601–
52 115) 

11 105 
(2 762–
48 436) 

10 832 
(2 104–
50 495) 

38 206 
(13 092–
126 347) 

2019–2021 626 
(31–2 642) 

1 868 
(322–7 905) 

10 410 
(2 589–
53 747) 

9 183 
(1 542–
36 877) 

3 752 
(196–

15 061) 

28 718 
(9 520–
92 245) 

M2 2006–2007 108.1 
(64.4–218.5) 

0.88 
(0.63–1.20) 

524 
(48–1 913) 

1 050 
(89–3 590) 

6 486 
(1 128–
27 004) 

6 098 
(1 478–
18 156) 

3 672 
(690–

11 497) 

18 952 
(6 032–
52 717) 

2014–2015 491 
(22–2 164) 

1 045 
(41–4 426) 

9 274 
(2 264–
48 407) 

9 780 
(2 446–
41 477) 

9 269 
(1 575–
45 646) 

33 643 
(11 899–
112 644) 

2019–2021 513 
(21–2 387) 

1 551 
(239–6 684) 

9 148 
(2 208–
45 334) 

7 614 
(1 305–
33 273) 

3 039 
(138–

13 573) 

24 548 
(8 523–
76 235) 

M3 2006–2007 108.4 
(64.8–208.5) 

0.89 
(0.56–1.37; BF < 3) 

0.53 
(0.35–0.80; BF ≥ 3) 

731 
(69–2 514) 

1 462 
(135–4 864) 

6 468 
(1 208–
28 494) 

8 386 
(1 951–
25 091) 

5 054 
(1 067–
16 269) 

23 451 
(7 546–
64 000) 

2014–2015 675 
(31–3 245) 

1 434 
(73–6 405) 

12 333 
(3 065–
60 977) 

13 040 
(3 163–
58 781) 

9 073 
(1 481–
44 276) 

41 070 
(14 642–
134 646) 

2019–2021 680 
(31–2 931) 

2 525 
(410–

10 363) 

15 221 
(3 597–
74 186) 

12 342 
(2 076–
54 054) 

4 212 
(186–

18 109) 

39 331 
(12 965–
126 019) 

Pygmy killer 
whale 

M1 2006–2007 24.4 24.9 
(14.7–47.2) 

0.66 
(0.47–0.94) 

33 
(0–333) 

61 
(0–528) 

222 
(0–2 919) 

857 
(75–4 958) 

283 
(0–2 035) 

1 838 
(238–7 959) 

2014–2015 21 
(0–414) 

47 
(0–688) 

188 
(0–3 284) 

209 
(0–3 137) 

1 831 
(111–

18 117) 

3 234 
(331–

19 294) 
2019–2021 23 

(0–417) 
46 

(0–732) 
190 

(0–3 188) 
215 

(0–3 234) 
923 

(57–9 090) 
2 199 
(227–

11 651) 
M2 2006–2007 25.2 

(14.9–47.6) 
0.28 

(0.18–0.49) 
62 

(0–775) 
110 

(0–1 220) 
374 

(0–6 223) 
1 981 
(163–

12 391) 

598 
(0–4 896) 

4 109 
(467–

19 042) 
2014–2015 40 

(0–1 004) 
80 

(0–1 610) 
329 

(0–6 827) 
370 

(0–7 284) 
4 633 
(244–

45 615) 

7 590 
(696–

48 757) 
2019–2021 39 

(0–969) 
80 

(0–1 487) 
320 

(0–6 545) 
382 

(0–7 903) 
2 216 
(126–

22 322) 

5 009 
(493–

26 575) 
M3 2006–2007 24.6 

(14.7–49.0) 
0.26 

(0.17–0.40; BF < 3) 
0.40 

(0.29–0.55; BF ≥ 3) 

60 
(0–662) 

121 
(0–1 050) 

437 
(0–5 772) 

1 527 
(148–8 167) 

585 
(1–3 812) 

3 466 
(458–

14 641) 

2014–2015 42 
(0–773) 

87 
(0–1 400) 

375 
(0–6 114) 

375 
(0–6 137) 

3 245 
(172–

29 964) 

6 123 
(631–

34 018) 
2019–2021 45 

(0–755) 
86 

(0–1 477) 
389 

(0–6 199) 
414 

(0–6 465) 
2 310 
(141–

23 120) 

5 075 
(525–

27 720) 

Two ˆ w values were obtained for R3 of both species because covariate of BF was included in the detection functions. 
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information (e.g. Kanaji et al., 2018 ). The present study pro- 
vides another option of effectively incorporating past in- 
formation and knowledge into the latest abundance esti- 
mation and future modifications in conservation planning.
Bayesian estimation has another merit in that it calculates 
the catch limit, because a lower percentile is usually used 

for reference abundance (Wade, 1998 ). Such reference abun- 
dance and its uncertainty are more explicitly expressed from 

the likelihood from joint models of detection probability,
school size, and encounter rate (Moore and Barlow, 2011 ,
2014 ). 

The Japanese government established the Second Basic Plan 

of Ocean Policy in 2013, which aimed to “collect and compile 
information about rare marine organisms by assessing endan- 
gered marine organisms by the level of their chance of extinc- 
tion by FY (fiscal year) 2016” (Cabinet Office, Government of 
apan, https:// www8.cao.go.jp/ocean/policies/ plan/plan.html ,
ccessed on 15 May 2023). By adopting this plan, the gov-
rnment released the first edition of the domestic Red List of
arine organisms in 2017 (Ministry of the Environment, ht 

ps://www .env .go.jp/content/000037610.pdf, accessed on 15 

ay 2023). A total 29 small odontocetes were assessed in this
ist, but the assessments of many species relied on limited bi-
logical information and empirical rules because of the lack 

f quantitative information. Finally, all small cetacean species 
ere categorized as “unranked” based on qualitative assess- 
ents. Such a data-limited situation has been commonly rec- 
gnized in the IUCN Red List, particularly in less-frequently 
bserved oceanic cetaceans. For example, Fraser’s dolphins 
ave been considered as “rare species” in the waters off Japan
ecause of the infrequency of their encounters (Mammal So- 
iety of Japan, 1997 ). We tested the data-limited abundance

https://www8.cao.go.jp/ocean/policies/plan/plan.html
https://www.env.go.jp/content/000037610.pdf
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Figure 5. Median and 0.90, 0.75, 0.60, 0,40, 0.25, and 0.10 posterior percentiles of total abundance of six FTCS across the blocks A–E and block-specific 
abundances by trend model with random effects accounting for spatiotemporal changes in animal distributions. Bars represent the median and 60% CIs 
of bootstrapped block-specific abundance estimates in 2006, 2007, 2014 and 2015, 2019, 2020, and 2021. 

Table 4. Summary of abundance trend analyses. 

Species NLL σ R P 95 P 60 N 

tot 
2020 CV PBR 2020 

Common bottlenose dolphin 172 (152–19 069) 9.5 (8–12.8) 0.99 (0.95–1.04) 45.9 66.2 49 762 
(19 043–175 984) 

0.67 320 

Risso’s dolphin 183 (170–193) 2 (1.3–3) 1.04 (0.95–1.04) 64.8 69.8 194 676 
(66 310–764 357) 

0.73 1187 

Short-finned pilot whale 158 (145–6 410) 9.1 (7.5–14) 1.02 (0.95–1.04) 61.6 77.6 43 585 
(14 274–274 897) 

1.15 230 

Rough-toothed dolphin 756 (109–14 128) 9.2 (7.3–11.5) 1.04 (0.95–1.04) 69.7 80.9 11 127 (2 455–129 460) 2.21 51 
Pantropical spotted dolphin 174 (164–5 751) 4.9 (4–6.3) 1.02 (0.95–1.04) 68.2 84.3 152 485 

(54 797–399 938) 
0.53 951 

Melon-headed whale 148 (121–11 230) 6.2 (4.1–12.4) 1.04 (0.95–1.04) 79.7 92.6 73 412 
(23 443–231 995) 

0.63 442 

Negative log-likelihood ( NLL , median and 95% credible intervals), probability that abundance in 2020 was larger than 95 or 60% of abundance in 2006 
( P 95 and P 60 ), total abundance in 2020 ( N 

tot 
2020 ), and PBR at 2020. 

e  

p  

i  

t  

o  

w  

m  

t  

a  

D  

h  

s

A

I  

a  

f  

t  

H  

a  

i  

m  

d  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/6/1643/7192207 by N
ational R

esearch Institute of Far Seas Fisheries, Fisheries R
esearch Agency user on 07 M

ay 2024
stimation for two RSCS. All three models with different
riors estimated several tens of thousands of Fraser’s dolphins

nhabiting the waters off Japan ( Table 3 ), which indicated
hat the current population size was much larger than previ-
usly believed. Conversely, a mean abundance of pygmy killer
hales of only several thousands was estimated using three
odels ( Table 3 ). This abundance was an order smaller than

hat of Fraser’s dolphins, and their habitat was limited to rel-
tively small areas of block E and the southwest part of block
. Although uncertainty still remains, the estimates provided
ere are undoubtedly important for assessing the population
tatus of RSCS. 
t  
bundance trends and conservation implications 

t has been widely recognized that time series of abundance
nd the trends derived from the time series are fundamental
or assessing and predicting the current and future popula-
ion status of various species (Hilborn and Walters, 1992 ).
owever, such information was often ineffective to identify

t-risk stocks, because the statistical power to detect trends
n abundance was low when using the available datasets for
any marine mammal populations (Taylor et al., 2007 ). Tra-
itionally, hypotheses-based statistical analyses are employed
o detect abundance trends (e.g. Kanaji et al., 2011 ); however,
his approach often failed because of the large uncertainty
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in the abundance estimates and infrequent surveys (Taylor 
et al., 2007 ). The simulation-based approach presented here 
provided important information on the status in population 

abundance over the past 15 years. 
The method to model the abundance trends was inspired 

by an approach developed by Skaug et al. (2004) , in which 

random-effects model was fitted to the line-transect survey 
data for Atlantic minke whales. Their datasets did not have 
blocks with no sightings, and thus the estimated additional 
variance parameter was successfully estimated with reason- 
ably small value ( ̂  σ = 0 . 22 ) from repeated surveys in the 
same block (Skaug et al., 2004 ). On the other hand, several 
species had zero abundance estimates in specific blocks and 

years in our previous estimates (Kanaji et al., 2018 ). Zero 

abundances were dealt with by a mixture of Poisson distri- 
bution through random-effects modelling, but it eventually 
resulted in large additional variance estimates (e.g. ˆ σ = 9 . 5 

for common bottlenose dolphins; Table 4 ). In spite of these 
caveats, overall, trend model was fitted well to the abun- 
dance data and uncertainty in abundance estimates were suf- 
ficiently considered by random effects accounting for the in- 
terannual changes in animal distributions ( Table 4 and Figure 
5 ). The R tended to be smaller for common bottlenose dol- 
phins than for the other species ( Table 4 ). Regarding the es- 
timated population trends, the posterior odds of the latest 
abundance ( N 

tot 
2020 ) being below or above the abundance at 

the starting year ( N 

tot 
2006 ) is expected to be 50% if the abun- 

dance remains constant during the study period. P 95 of com- 
mon bottlenose dolphins was smaller than 50%, and P 60 also 

showed relatively smaller values for the species. Among six 

FTCS, rough-toothed dolphins, pantropical spotted dolphins, 
and melon-headed whales were oceanic species, and mainly 
inhabit offshore waters and around oceanic islands (Kanaji 
et al., 2017 ). Given their habitat being not much susceptive 
to human-caused disturbances and being not main target by 
dolphin fisheries, abrupt population reduction between the 
past 15 years seems unreasonable. On the other hand, these 
results support our previous recognition that the abundance 
of common bottlenose dolphins has been gradually decreasing 
over the past few decades (Kanaji et al., 2021 ). Conversely, the 
population size of Risso’s dolphins has been increasing in re- 
cent years (Kanaji and Gerrodette, 2020 ; Kanaji et al., 2021 ).
Currently, annual catch limits for these six FTCS are 500 for 
common bottlenose dolphins, 460 for Risso’s dolphins, 168 

for short-finned pilot whales, 40 for rough-toothed dolphins,
470 for pantropical spotted dolphins, and 363 for melon- 
headed whales (based on the amendment in 2017; Yoshida,
2019 ). Total (combined) abundance estimates tended to be 
larger when trend model was applied than those from simple 
sum of the abundance estimates from different blocks/years 
( Tables 2 and 4 ). Trend model incorporated additional vari- 
ances into the former estimates, thereby resulting in similar 
PBRs with the latter approach except for Risso’s dolphins 
and pantropical spotted dolphins. For both results, the cur- 
rent catch limit largely exceeds our PBR estimates only for 
common bottlenose dolphins, although the annual catch in 

the past 10 years from 2011 to 2020 were 111–262, which 

has not exceeded them. 
What lessons did we learn from this modelling study, and 

how do we change or modify the conservation measures for 
FTCS and RSCS in the waters off Japan? First, we detected 

the species of greater concern in terms of population trends.
As a result of the three types of trend analyses, only the 
ommon bottlenose dolphin showed a decreasing trend in 

bundance. These results would help prioritize our conserva- 
ion efforts. Second, many RSCS have not been covered by
tock assessments in Japan, whereas there is currently an in-
reased demand for assessment of population statuses even for 
on-fishery–targeted cetaceans. Our approach may be appli- 
able to many other species with no quantitative information 

o date. For example, information and datasets for the well-
tudied and fishery-targeted beaked whales (Miyashita, 1986 ; 
asuya and Miyashita, 1997 ; Okamura et al., 2012 ) may
elp assess the population status of the other beaked whale
pecies without sufficiently quantitative information. Third,
he present study indicated that distribution changes likely 
ffected assessment output, particularly for species inhabit- 
ng the dynamic ocean environment. In the California current 
ystem, population dynamics models combined with habitat 
odelling substantially improved the precision of the estima- 

ions of abundances and their trends (Boyd et al., 2018 ; Boyd
nd Punt, 2021 ). Similarly, cetacean habitats likely change on
 yearly basis according to the path patterns of Kuroshio Cur-
ent off the coast of Japan (Kanaji and Gerrodette, 2020 ).
abitat modelling can also deal more explicitly with spa- 

ial structures of animal distributions by spatial random ef- 
ect (e.g. intrinsic conditional autoregressive, iCAR; Blangia- 
do and Cameletti, 2015 ). However, habitat models generally 
equire a greater number of parameters to be estimated, and
ufficient sample size ( ≥30) is required to estimate habitat
ith high precision (Wisz et al., 2008 ). How do we model

patial structures for data-limited cetaceans is a challenge 
or the future, but our approach might be preferred at this
tage because small samples might not fit well to the spatial
odelling of environmental relationships. Moreover, contin- 
ing comprehensive sighting surveys, such as the JAFRACCS 
rogrammes, and updating the information on the current 
opulation status, are definitely our responsibility as cetacean 

esearchers. We believe that our survey programme and an- 
lytical approaches will improve the management and con- 
ervation schemes in Japan and provide ideas for conserving 
etacean populations in many other regions. 
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