

Dietary protein requirement for somatic growth and gonad production in the sea urchin Strongylocentrotus intermedius at different life stages

メタデータ	言語: English
	出版者:
	公開日: 2024-03-14
	キーワード (Ja):
	キーワード (En): Body weight; Gonad index; Optimum
	protein level; Protein leaching; Test diameter
	作成者: 髙木, 聖実, 長谷川, 夏樹, 渡辺, 剛, 酒井, 勇一,
	鵜沼, 辰哉
	メールアドレス:
	所属: 水産研究・教育機構, 水産研究・教育機構,
	水産研究・教育機構, 北海道立総合研究機構,
	水産研究・教育機構(退職), 東北大学
URL	https://fra.repo.nii.ac.jp/records/2001429

Dietary protein requirement for somatic growth and gonad production in the sea urchin 1 2 Strongylocentrotus intermedius at different life stages 3 Satomi Takagi^a*, Natsuki Hasegawa^a, Tsuyoshi Watanabe^a, Yuichi Sakai^b, Tatsuya 4 5 Unuma^{a,c} 6 7 ^aKushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and 8 Education Agency, Kushiro, Hokkaido 085-0802, Japan ^bHakodate Fisheries Research Institute, Hokkaido Research Organization, Hakodate, 9 10 Hokkaido 040-0051, Japan ^cPresent address: Graduate School of Agricultural Science, Tohoku University, Sendai, 11 12 Miyagi 980-8572, Japan 13 14 *Corresponding author 15 Satomi Takagi 16 Email: takagi satomi02@fra.go.jp 17 18 19 Abstract 20 The rise in the demand for sea urchin aquaculture requires the optimization of dietary 21 protein levels to maximize somatic growth and gonad production throughout the

22 aquaculture process. This study aimed to investigate the dietary protein requirement for

23 somatic growth and gonad production of the sea urchin Strongylocentrotus intermedius

24 at different life stages considering protein leaching from diets during seawater immersion.

25 Feeding trials were performed on three sizes of S. intermedius: S, small urchins prior to

26 gonad differentiation; M, medium urchins following gonad differentiation; and L, large

27	urchins close to the biological minimum size. Two feeding trials using diets with different
28	gluten (protein source) levels (experiment I; 5, 10, 15, 20, 30, and 40%: experiment II; 0,
29	2, 4, 7, and 10%) were conducted for each size group. The diet ingredients were selected
30	to minimize protein leaching, and the protein content of each diet was determined from
31	the average content after immersion in seawater for 24 and 72 h. No significant
32	differences were observed in the specific growth rate (SGR) of body weight in experiment
33	I in all size groups. The SGRs of the body weight of urchins fed 4 and 7% gluten diets
34	were significantly higher than those fed diets containing 0% gluten in experiments SII
35	and MII, and a similar tendency was observed for SGRs for the body weight and test
36	diameter of large urchins. Gonad indices of sea urchins increased with an increase in
37	dietary protein content in experiments MII and LII, and the gonad indices of urchins fed
38	15 and 20% gluten diets were significantly higher than those fed 5% gluten diet in
39	experiments MI and LI. Broken-line regression analyses on urchins in experiment II
40	estimated the protein requirement for somatic growth to be 2% regardless of the urchin
41	size, which is well below the range of feed protein contents (9-50%) used in previous
42	studies. The analyses on urchins in experiment I estimated the protein requirement for
43	gonad production of medium and large urchins to be 13% and 15%, respectively, which
44	was lower than that previously reported (>20%). These results indicate that previous

45	studies overestimated the protein requirement owing to protein leaching during the
46	immersion of feed in seawater. Our findings indicate that protein content in sea urchin
47	feed diets can be considerably reduced irrespective of their cultivation stage from seed to
48	market size.
49	Keywords: body weight; gonad index; optimum protein level; protein leaching; test
50	diameter
51	
52	1. Introduction
53	Global fish and shellfish consumption has increased over the past few decades (FAO,
54	2022a; 2022b). Sea urchin gonad is a premium shellfish delicacy with high commercial
55	value, and it is consumed in Japan, China, Korea, the United States, Canada, Chile, and a
56	few other European countries (Sun and Chiang, 2015). The Tokyo Metropolitan Central
57	Wholesale Market, Japan-the largest wholesale sea urchin market in the world (Sun and
58	Chiang, 2015)—witnessed a steep rise in the yearly average price of sea urchin gonads
59	from 6,625 JPY kg^{-1} in 2011 to 20,502 JPY kg^{-1} in 2021 (Metropolitan Central Wholesale
60	Market, 2022). Additionally, the commencement of the import of live urchins, fresh
61	gonads, and frozen gonads into Europe and Oceania since 2012 (FAO, 2022c) indicates a
62	rise in their global demand. However, world sea urchin landings have stagnated (FAO,

63	2022d) owing to stock depletions caused by overfishing since the 1990s (Andrew, 2002).
64	Thus, the production of hatchery-raised urchins in aquaculture systems was proposed to
65	meet market demands (McBride, 2005; Pearce, 2010; Walker et al., 2015). The cultivation
66	of sea urchins from egg to market size takes over three years, requiring a constant supply
67	of feed throughout the year; fresh Laminariales kelp is commonly used as feed for sea
68	urchin aquaculture (Unuma and Kayaba, 2015; Lawrence et al., 2019), and its availability
69	varies depending on the year, season, and location. Therefore, artificial feeds should be
70	developed to stabilize the supply and nutritional value of sea urchin feeds without
71	seasonal and locational limitations.

72 To develop sea urchin feeds, it is necessary to clarify the requirement of various 73 nutrients in diets. Sea urchin aquaculture includes cultivation from egg until the market 74 size, as well as the enhancement of gonads. Sea urchin body growth initially occurs after 75 metamorphosis; both body and gonadal growths occur after the gonads differentiate. 76 Studies on wild populations of Strongylocentrotus droebachiensis (Minor and Scheibling, 77 1997; Meidel and Scheibling, 1999) and Hemicentrotus pulcherrimus (Agatsuma and Nakata, 2004) suggest that body and gonad growth may not occur independently of each 78 79 other. However, the optimum nutrient level required for the growth of each body site is not necessarily the same, as chemical compositions vary among the body sites (Fuji, 1967; 80

81	Hammer et al., 2006a). Generally, the nutrients and energy allocated toward somatic
82	growth decrease, and those allocated toward gonad production increase with increasing
83	body size, i.e., aging (e.g., Fuji, 1967; Fernandez and Boudouresque, 2002). Moreover,
84	with the increase in body size, the energy allocated toward maintenance increases,
85	whereas the assimilation efficiency decreases (Fuji, 1967; Fernandez and Boudouresque,
86	2002). These observations suggest that the nutrient requirements of sea urchins could vary
87	based on their life stage and body site.
88	Protein is one of the most essential nutrients in sea urchin diets. Proteins play a
89	crucial role in many biological processes, including reproduction, growth, and
90	maintenance of body tissue (Watts et al., 2020). Previous studies suggest that the protein
91	requirements for somatic growth of young Lytechinus variegatus (approximately 4 g body
92	weight, BW) is >30% (Heflin et al., 2016), and those of juvenile Strongylocentrotus
93	intermedius (1.53 g BW; Zuo et al., 2017), young P. depressus (approximately1.6 g BW;
94	Akiyama et al., 2001) and adult L. variegatus (23 g BW; Hammer et al., 2006b) are
95	approximately 20%. The protein requirements for gonad production in young P. depressus
96	(Akiyama et al., 2001), Paracentrtotus lividus (approximately 17 g BW; Lourenço et al.,
97	2020), young L. variegatus (Heflin et al., 2016), and juvenile S. intermedius (Zuo et al.,
98	2017) are suggested to be \geq 30%, and those of adult <i>L. variegatus</i> (Hammer et al., 2006b)

99	and adult Strongylocentrotus droebachiensis (>50mm test diameter, TD; de Jong-
100	Westman et al., 1995; Pearce et al., 2002) are 20%. However, the effect of life stage on
101	protein requirement has not been systematically studied in a particular species.
102	Additionally, a portion of the protein included in the diets of slow-feeding marine animals,
103	such as several gastropods, crustaceans, and echinoids, is lost as it leaches from their diets
104	into the water before consumption (Durazo-Beltrán and Viana, 2001; Dominy et al., 2003;
105	Argüello-Guevara and Molina-Poveda, 2013; Watts et al., 2020). Our previous study
106	demonstrated that >40% of the protein content of artificial diets can decease after
107	seawater immersion when the protein source included in artificial diets does not generate
108	a network structure and the binder concentration is low; hence, protein can leach from the
109	diet upon immersion in seawater (Takagi et al., 2022). Therefore, to estimate the optimum
110	dietary protein level for gonad production in adult Mesocentrotus nudus, we used two
111	novel approaches to eliminate the influence of protein leaching in seawater: (1) the
112	experimental diets were designed to reduce protein leaching to the extent possible during
113	seawater immersion; (2) the actual protein contents of the diets following immersion in
114	seawater were determined and used in the model analyses to determine the optimum
115	protein level (Takagi et al., 2022). The optimum level was estimated to be 12%, which
116	was much lower than those reported for other sea urchin species (20-35%; de Jong-

Westman et al., 1995; Akiyama et al., 2001; Pearce et al., 2002; Hammer et al., 2006b;
Heflin et al., 2016; Lourenço et al., 2020). Two scenarios are likely here: either previous
studies have overestimated the dietary protein requirement of sea urchins because of the
protein leaching, or the low protein requirement is specific for gonad production in adult *M. nudus*.

122 Strongylocentrotus intermedius is commercially harvested in northern Japan, China, 123 and Russia. This species, together with M. nudus, accounts for over two-thirds of the total 124 sea urchin landed in Japan (Unuma, 2015). Wild S. intermedius requires 2 years to reach 125 the biological minimum size (30–35 mm TD; Fuji, 1967), whereas urchins under satiation 126 feeding conditions in the laboratory can mature at 1 year of age (reviewed by Agatsuma, 127 2020). The gonad index for commercially caught S. intemedius is considered to be ≥ 15 128 (Machiguchi et al., 2012). In Japan, the hatchery seed of S. intermedius has been produced 129 to reseed the native wild stock (Agatsuma, 2015). Market size S. intermedius (≥40 mm 130 TD), grown from artificial seeds, has been commercially produced in northern Japan and China in regions with abundant availability of fresh Saccharina kelp (Liu and Chang, 131 132 2015; Unuma and Kayaba, 2015; Lawrence et al., 2019). Furthermore, the rise in seawater 133 temperature because of global warming would decrease the juvenile recruitment of wild S. intermedius (Gouda et al., 2017; Gouda and Agatsuma, 2020) and reduce the 134

135	distribution of Saccharina kelp in northern Japan (Sudo et al., 2020). This would further
136	expand the scope for S. intermedius aquaculture, and boost the production of suitable
137	diets to replace kelp. Zuo et al. (2017) investigated the protein requirement for somatic
138	growth and gonad production of juvenile S. intermedius (1.53 g body weight, BW) as
139	mentioned above (the third paragraph in this section). However, to the best of our
140	knowledge, the dietary protein requirement of juvenile S. intermedius before gonad
141	differentiation, as well as that of adults of the same species, has not been investigated yet.
142	The aim of this study was to determine the dietary protein requirement for somatic
143	growth and gonad production of S. intermedius at different life stages, eliminating the
144	influence of protein leaching. Feeding trials were conducted using three different sizes of
145	hatchery-reared sea urchins: (1) small juvenile sea urchin (approximately 6 mm TD; 0.1
146	g BW) at 0+ years of age before gonad differentiation, (2) juvenile sea urchin
147	(approximately 13 mm TD; 1 g BW) at 0+ years of age after gonad differentiation, and
148	(3) young sea urchin (approximately 30 mm TD; 12 g BW) at 1+ years of age and reaching
149	the biological minimum size. The sea urchins were fed diets containing varying levels of
150	proteins, designed to minimize protein leaching during seawater immersion (Takagi et al.,
151	2022). The actual protein content of the diets after immersion into seawater was obtained
152	and used to estimate the protein requirement for each body size based on the modeled

relationships between the dietary protein level and the resultant somatic growth and gonad
production (Takagi et al., 2022). The results of this study could provide practical solutions
for developing cost-effective sea urchin diets.

156

157 Materials and Methods

158 2.1. Sea urchin rearing

Four-month-old juvenile S. intermedius (about 3 mm TD), hatched and reared at a 159 hatchery in Akkeshi, Hokkaido, Japan, were transferred to the Kushiro Field Station of 160 the Japan Fisheries Research and Education Agency, Hokkaido (42°57'01" N, 144°26'35" 161 162 E) in July 2020 (Group A) and 2021 (Group B). The sea urchins were reared in sand-163 filtered running seawater and mainly fed naturally occurring attached diatoms in a rearing 164 tank for one month; thereafter, the sea urchins were fed fresh (live) Laminariales kelp ad 165 *libitum* until they grew to a size suitable for use in the feeding experiments. 166 2.2. Diet preparation 167

The protein source (wheat gluten) and binder source and concentration (50% potato starch) of the experimental diets were selected because of their high shape stability and low protein leaching capacity (Takagi et al., 2022). Experimental diets containing

171	different levels of wheat gluten (Gluten, from wheat, FUJIFILM Wako Pure Chemical
172	Corporation, $\leq 100\%$ purity) were prepared according to Takagi et al. (2022). Each diet
173	contained 50% potato starch (Starch, from Potato, FUJIFILM Wako Pure Chemical
174	Corporation, Osaka, Japan; $\leq 100\%$ purity) and 10% powdered <i>Saccharina japoniva</i> var.
175	diabolica (collected from Akkeshi Bay, Hokkaido (43°01'17" N, 144°50'12" E) between
176	April and May 2021). Crystalline cellulose (FD-301, CEOLUS®, Asahi Kasei Corp.,
177	Tokyo, Japan; $\leq 100\%$ purity) was used as the base material to balance the different gluten
178	concentrations (Table 1). Gluten and starch were of reagent grade, and cellulose was of
179	medicinal grade. The details of diet preparation are presented in Figure S1. One-and-a-
180	half times the amount of water was added to the dry ingredients. Before use in the feeding
181	experiments, a total of 50 g of each diet was dried at 60 $^{\circ}$ C for 72 h, and the crude protein,
182	crude lipid, ash, and carbohydrate contents in the diets $(n = 2)$ were analyzed
183	(supplementary material S1). The proximate composition of each diet is shown in Table
184	1.

186 2.3. Feeding experiment

187 Six feeding experiments were conducted at the Kushiro Field Station using three
188 different size groups of *S. intermedius* at tenfold intervals of body weight; small urchins

189	before gonad differentiation (approximately 6 mm TD) were used for experiments SI and
190	SII, medium urchins with small five semi-transparent gonads visible to the naked eye
191	(Fuji, 1960) (approximately 13 mm TD) were used for experiments MI and MII, and large
192	urchins reaching the biological minimum size (approximately 30 mm TD) were used for
193	experiments LI and LII (Table 2). Sea urchins of each body size were subjected to two
194	feeding experiments involving different gluten concentrations in their diets: 5, 10, 15, 20,
195	30, and 40% gluten concentrations were used for experiments SI, MI, and LI, and 0, 2, 4,
196	7, and 10% gluten concentrations were used for experiments SII, MII, and LII (Table 1).
197	A gluten concentration of 10% was used in all experiments.
198	
199	2.3.1. Experiment SI: small sea urchins fed with 5-40% gluten diets

Sea urchins were subjected to six feeding treatments with 5, 10, 15, 20, 30, and 40% gluten diets (SI-5, SI-10, SI-15, SI-20, SI-30, and SI-40; Tables 1 and 3). The feeding experiment was conducted from August 27 to September 15, 2021. At the start of the experiment, 108 sea urchins (85–157 mg BW) from Group B were weighed using an electronic balance. The sea urchins were divided into six treatments (18 individuals/treatment) (Table 3). The urchins in each treatment were housed in three polyethylene baskets (L 8 cm × W 8 cm (bottom), L 10 cm × W 10 cm (upper) × H 11 cm,

207	with a 4 mm diameter open mesh on the sides higher than 1.3 cm from the bottom) at a
208	density of six individuals/basket (three baskets/treatment). The three baskets from each
209	treatment were individually placed in three trays (L 440 cm \times W 320 cm \times H 70 cm). The
210	trays were placed in a rectangular tank (inside dimensions, L $117 \times W 78 \times H 38$ cm) that
211	was aerated and supplied with sand-filtered seawater maintained at approximately 13.5 °C
212	(3L/min/tank, 6 cm depth, flow-through system). To eliminate the effects of the tray
213	position, each tray was rotated in the tank every week. The sea urchins were provided an
214	excess amount of the diet every 2-3 d to allow them to feed until satiation. The uneaten
215	food was collected immediately prior to replenishing the supply with fresh food, and then
216	frozen at -18 °C. At the end of the experiment, the BW of all sea urchins in the six
217	treatments was measured, and the growth rates for each basket were calculated as follows:
218	Specific growth rate (SGR) in BW (%/day) = $[\ln (\text{final BW}) - \ln (\text{initial BW})] \times$
219	100 / days.
220	The daily seawater temperature in the tank was calculated from the data measured every
221	1 h using a data logger (TR-52i, T&D, Nagano, Japan). The average seawater temperature
222	in the tank during the experiment was 13.8 ± 0.6 °C (mean ± standard deviation).
223	

224 2.3.2. Experiment SII: small sea urchins fed with 0–10% gluten diets

225	Sea urchins were subjected to five feeding treatments with 0, 2, 4, 7, and 10% gluten
226	diets (SII-0, SII-2, SII-4, SII-7, and SII-10; Tables 1 and 3). The feeding experiment was
227	conducted from October 6 to November 9, 2021. At the start of the experiment, 102 sea
228	urchins (82–147 mg BW) from Group B were weighed and divided into six groups; one
229	was treated as an initial control and dissected at the start of the experiment (SII-C, 12
230	individuals), and the remaining were used for the five treatments (18
231	individuals/treatment) (Table 3). On November 5, the BWs of all sea urchins in the five
232	treatments were measured, and the growth rate for each basket was calculated. The sea
233	urchins were then placed back in the baskets in the tank and provided an excess amount
234	of fresh Saccharina longissima kelp, which was collected from an area facing the Kushiro
235	Field Station in October 2021, until November 9, to replace the gut contents of the urchins
236	fed the artificial diet with kelp. The whole bodies of the sea urchins were then oven-dried
237	at 60 °C for 3 d, and the dry weight was measured. The dried samples for each basket
238	were mixed and used for analyzing the protein content (see Supplementary material S1
239	for details). The dried samples of SII-C were divided into three groups based on average
240	body size, and the mixtures by groups were used for further analysis.
241	The other procedures used were the same as those indicated in experiment SI. The
242	average seawater temperature in the rearing tank was 13.6 ± 1.0 °C.

244 2.3.3. Experiment MI: medium sea urchins fed with 5–40% gluten diets

245	Sea urchins were subjected to six feeding treatments with 5, 10, 15, 20, 30, and 40%
246	gluten diets (MI-5, MI-10, MI-15, MI-20, MI-30, and MI-40; Tables 1 and 3). The feeding
247	experiment was conducted from October 20 to November 17, 2021. At the start of the
248	experiment, 102 sea urchins (722-1373 mg body wet weight, BW) from Group B were
249	weighed and divided into seven groups; one was used as the initial control (MI-C, 12
250	individuals), and the others were used for the six treatments (15 individuals/treatment)
251	(Table 3). The urchins in each treatment were housed in three polyethylene baskets at a
252	density of five individuals/basket (three baskets/treatment). The sea urchins in MI-C were
253	dissected at the start of the experiment, and the remaining individuals in the six treatments
254	were dissected at the end of the experiment after BW measurements; all gonads were
255	removed from the test, blotted dry on a paper towel, and weighed using an electric balance
256	The gonad index (GI) of each individual and the weekly increase in GI for each basket
257	were calculated as follows:

258 $GI = gonad wet weight \times \frac{100}{BW},$

259 Weekly increase in $GI = (final \ GI - initial \ GI) \times \frac{7}{days}$.

260 The gonad tissues were oven-dried at 60 °C for 3 d, and the dry weight was measured.

261 The water content and dry weight of the gonads of each individual were measured, and 262 the weekly increase in the gonad dry matter index (weekly increase in GDI) for each basket was calculated according to Takagi et al. (2022) as follows: 263 264 Gonad water content (%) = (wet weight of gonad tissue dry weight of gonad tissue) $\times \frac{100}{\text{wet weight of gonad tissue}}$ 265 Gonad dry weight = gonad wet weight $\times \frac{dry weight of gonad tissue}{wet weight of gonad tissue}$ 266 Weekly increase in GDI = $\left(\frac{final \ gonad \ dry \ weight}{final \ BW} - \frac{gonad \ dry \ weight \ of \ MI-C}{BW \ of \ MI-C}\right) \times \frac{7}{days}$. 267 The gonad protein content was determined for six urchins from each experimental 268 269 treatment (two urchins from each of the three baskets), and six urchins from the MI-C. 270 Individuals with the second and third largest gonad dry weights from each basket and six individuals with the largest gonad dry weight in the MI-C were selected. Details of protein 271 272 analysis are provided in Supplementary material S1. 273 The other procedures used were the same as those described in experiment SI. The 274average seawater temperature in the rearing tank was 13.8 ± 0.6 °C. 275 276 2.3.4. Experiment MII: medium sea urchins fed with 0–10% gluten diets 277 Sea urchins were subjected to five feeding treatments with 0, 2, 4, 7, and 10% gluten 278 diets (MII-0, MII-2, MII-4, MII-7, and MII-10; Tables 1 and 3). The feeding experiment

279	was conducted from November 24 to December 24, 2021. At the start of the experiment,
280	87 sea urchins (612-1784 mg BW) from Group B were weighed and divided into six
281	groups; one was used as the initial control (MII-C, 12 individuals), and the others were
282	used for the five treatments (15 individuals/treatment) (Table 3).
283	The other procedures used were the same as those described for experiment MI. The
284	average seawater temperature in the rearing tank was 13.6 ± 0.9 °C.
285	
286	
287	2.3.5. Experiment LI: large sea urchins fed with 5-40% gluten diets
288	Sea urchins were subjected to six feeding treatments with 5, 10, 15, 20, 30, and 40%
289	gluten diets (LI-5, LI-10, LI-15, LI-20, LI-30, and LI-40; Tables 1 and 3). The feeding
290	experiment was conducted from November 19 to December 23, 2021. At the start of the
291	experiment, 120 sea urchins (9.0-18.3 g BW) from Group A were subjected to TD
292	measurement with a vernier caliper (0.01 mm accuracy) and BW measurement using a
293	balance. The sea urchins were divided into seven groups; one was used as the initial
294	control (LI-C, 12 individuals), and the remaining were used for the six treatments (18
295	individuals/treatment) (Table 3). The urchins in each treatment were housed in three
296	polyethylene cages (L 22 cm × W 15 cm (bottom), L 25 cm × W 17 cm (upper), H 14 cm,

297	with 5 mm \times 5 mm mesh on the sides higher than 1.8 cm from the bottom) at a density of
298	six individuals/cage (three cages/treatment). The three cages from each treatment were
299	individually placed in three rectangular tanks (inside dimension, L 117 ×W78 × H38 cm).
300	The tanks were aerated and supplied with sand-filtered seawater maintained at
301	approximately 13.5 °C (3 L/min/tank, 15 cm depth, flow-through system). To eliminate
302	the effects of the cage position, each cage was rotated in the tanks every week. At the end
303	of the experiment, the TD and BW of all sea urchins were measured; the SGR in TD was
304	calculated as follows:
305	SGR in TD (%/day) = $[\ln (\text{final TD}) - \ln (\text{initial TD})] \times 100 / \text{days}.$
306	The gonad protein content was determined for six urchins from each experimental
307	treatment (two urchins from each of the three cages) and six urchins from the LI-C.
308	Individuals with GI values close to the average for their cage or the average of the LI-C
309	group were selected.
310	Other procedures used were the same as those described in experiment MI. The
311	average rearing water temperature was 13.5 \pm 1.0 °C in one of the tanks and 13.4 \pm 1.0 °C
312	in the others.
313	
314	2.3.6. Experiment LII: large sea urchins fed with 0–10% gluten diets

315	Sea urchins were subjected to five feeding treatments with 0, 2, 4, 7, and 10% gluten
316	diets (LII-0, LII-2, LII-4, LII-7, and LII-10; Tables 1 and 3). The feeding experiment was
317	conducted from January 14 to February 17, 2022. At the start of the experiment, 72 sea
318	urchins (8.8–13.4 g BW) from Group A were measured for TD and BW. The sea urchins
319	were divided into six groups; one for the initial control (LII-C), and the others for the five
320	treatments (12 individuals/treatment) (Table 3). The urchins in each treatment were
321	housed in two polyethylene cages at a density of six individuals/cage (two
322	cages/treatment); each cage was then placed in two rectangular tanks.
323	Other procedures were the same as those described in experiment LI. The average
324	seawater temperature in the tank was 12.7 ± 1.3 °C.
325	
326	2.4. Food and protein intake, and food and protein efficiency
327	The frozen uneaten foods were oven-dried at 60 °C for 72 h after the feeding trials
328	were completed. The weight of the food provided to the urchins and the dry weight of the
329	uneaten food was measured for each basket or cage. To determine the change in diet
330	weight without the influence of sea urchin feeding, each diet used for the feeding
331	experiments was immersed in the rearing tanks for 48 h (three replicates each). The
	experiments was miniersed in the rearing tanks for 10 in (times repricates each). The

was calculated by dividing the dry weight of the diet after immersion by the weight of the
diet before immersion, and was used to calculate the food intake for each basket or cage,
as follows:

Food intake =
$$\frac{(WW_{given} \times R - DW_{left})}{number of individuals in basket}$$

337 where WW_{given} is the total weight of diets provided in the basket (or cage), *R* is the 338 weight change ratio, and DW_{left} is the total dry weight of uncaten diets left in the basket 339 or cage.

To determine the protein content of the diets after they were fed to the urchins, a seawater immersion test was conducted for each diet. Briefly, 5–8 samples of each diet were immersed in seawater for 24 and 72 h. The diets were subjected to protein analysis before and after 24 and 72 h of immersion (Supplementary material S1). The average protein content in the diets after 24 and 72 h of immersion (n = 2) (Table 1) was used to calculate the protein intake, as follows:

$$Protein\ intake = \frac{(average\ protein\ content \times food\ intake)}{100}.$$

347 Daily food intake, daily protein intake, feed efficiency (FE), protein efficiency (PE), and

- 348 protein retention for the experiment SII and gonad protein retention for experiments MI,
- 349 MII, LI, and LII were calculated for each basket or cage, as follows:
- 350 Daily food intake (%/day) =

251	food intake×100
501	$[days \times (total final BW + total initial BW + Bw of dead animal)/(2 \times number of individuals in bastket)]$
352	3
353	Daily protein intake (%/day) =
354	protein intake×100 [days×(total final BW +total initial BW+BW of dead animal)/(2 ×number of individuals in basket)]
355	,
356	$FE (\%) = \frac{(final BW + BW of dead animal-initial BW)}{number of individuals in basket} \times \frac{100}{food intake},$
357	$PE (\%) = \frac{(final BW + BW of dead animal-initial BW)}{number of individuals in basket} \times \frac{100}{protein intake},$
358	$Protein\ retention\ (\%) =$
359	(final body protein content × final body dry weight–initial body protein content × intial body dry weight) protein intake
360	,
361	$Gonad \ protein \ retention \ (\%) = \frac{(final \ gonad \ protein \ content \times final \ gonad \ dry \ weight}{protein \ initial \ gonad \ dry \ weight}.$
362	
363	
364	2.5. Histological Observation.
365	The gonads of all animals in experiments LI and LII were subjected to histological
366	observation at the end of the experiment. A small piece (approximately 0.2 g) of gonads
367	was fixed in Davidson's solution, dehydrated, and embedded in paraffin wax. Sections
368	with a thickness of 10 μ m were prepared, dewaxed, stained with hematoxylin and eosin,

369	and observed under a light microscope (BH-2, Olympus Corporation, Tokyo, Japan). The
370	gonadal maturities of the animals were classified into five stages as described by Fuji
371	(1960) with minor modifications (Unuma, 2002), as follows: recovering (stage 1, before
372	gametogenesis), growing (stage 2, early gametogenesis), premature (stage 3, mid-
373	gametogenesis), mature (stage 4, late gametogenesis), and spent (stage 5, after spawning).
374	
375	2.7. Statistical analyses
376	Statistical analyses were performed using R version 4.1.0. The data were tested for
377	the homogeneity of variance using Levene's test. Significant differences in BW, body dry
378	weight, GI, TD, gonad dry weight, and gonad water content among treatments were
379	analyzed using nested one-way analysis of variance (ANOVA). Tukey's multiple
380	comparison test was performed as a post-hoc test. Significant differences in body (SII)
381	and gonad (MI, MII, LI, and LII) protein contents, protein retention, SGR, weekly
382	increase in GI, daily food intake, daily protein intake, FE, and PE among treatments were
383	tested using the Tukey–Kramer method.
384	To determine the dietary protein requirement for somatic growth and gonad
385	production, the broken-line regression model, which is used to estimate the protein
386	requirement of sea urchins (Takagi et al., 2022), was used to predict the relationship

388	and between the dietary protein content and weekly increase in GDI in experiments MI
389	and LI. Additionally, the relationships between the dietary protein contents and SGRs of
390	TD in experiment LII were predicted to estimate the protein requirement for test growth.

between the dietary protein content and SGR of BW in experiments SII, MII, and LII,

391

387

392 **3.** Results

393 3.1. Experiment SI

394 No sea urchins died during the experiment. The average BW increased from 121 mg 395 to > 200 mg in all treatments; that of SI-5 was the largest with 214 mg, although significant differences in the final BW and SGR of BW were not detected among 396 397 treatments (Tables 3, S1 and S2; Fig. 1B). Thus, the protein requirement for somatic 398 growth of small sea urchins was suggested to be <10%. Daily food intake of SI-5 was significantly higher than that of other treatments (P < 0.001; Fig. 2B). Daily protein intake 399 400 and FE increased with dietary protein increase, and FE of SI-40 was significantly higher 401 than that of SI-5, -10, and -20 (P < 0.05; Figs. 2D and S2B). No significant differences were observed in PE among treatments (Fig. S2D). 402

403

404 3.2. Experiment SII

405	No sea urchins died during the experiment. The average BW increased from 119 mg
406	to 177 mg in SII-0 and to >200 mg in the other treatments. The final BW, body dry weight,
407	SGR of BW, and body protein content of SII-0 were significantly lower than those of the
408	other treatments ($P < 0.05$; Tables 3, S1, S2, and S3; Fig. 1A). FE and PE increased and
409	decreased, respectively, with an increase in dietary protein (Figs. S2A and S2C). The daily
410	food intake of SII-2 and daily protein intake of SII-7 were significantly higher than those
411	of SII-10 and SII-0, respectively ($P < 0.001$; Figs 2A and 2C). Protein retentions of SII-
412	0, -2, and -4 were significantly higher than those of the other treatments ($P < 0.01$; Table
413	S3).

415 3.3. Experiment MI

No sea urchins died during the experiment. The average BW increased from 1039 mg to 1561 mg in MI-5 and to 1462–1496 mg in the other treatments, although significant differences in the final BW and SGR of BW among treatments were not detected (Tables 3, S1 and S2; Fig. 1D). Thus, the protein requirement for somatic growth of mediumsized urchins was suggested to be <10%. The GI of all treatments increased from 2.6 to >7.8 at the end of the experiment, and the GI and weekly increase in GI of MI-15 and -20 were significantly higher than those of MI-5 (P < 0.05; Table 4; Fig. 3B). The SGR of

423	BW, daily food intake, and PE followed a decreasing trend (Table S2; Figs. 1D, 2F, and
424	S2H); daily protein intake and FE increased with an increase in dietary protein (Figs. 2H
425	and S2F). There were no significant differences in SGRs of BW, gonad dry weight, gonad
426	protein content, and protein retention for gonads among treatments (Tables S1, S2 and
427	S4; Fig. 1D). A significant difference in gonad water content was detected using a nested
428	ANOVA, but not by the Tukey–Kramer method (Tables 4 and S1).

430 3.4. Experiment MII

431 No sea urchins died during the experiment. The average BW increased from 1050 432 mg to 1501 mg in MII-0 and to >1700 mg in the other treatments, but there were no significant differences among treatments (Tables 3 and S1). The SGR of BW of MII-0 433 was significantly lower than that of the other treatments (P < 0.05; Table S2; Fig. 1C). GI 434 435 increased in all treatments, and higher dietary protein resulted in higher GI at the end of 436 the experiment (Table 4). Weekly increase in GI, gonad dry weight, gonad water content, 437 and FE were also higher with higher dietary protein (Tables 4 and S4; Figs. 3A and S2E). 438 Thus, the protein requirement for gonad production of medium-sized urchins was 439 suggested to be >10%. No significant differences were observed in protein retention for gonads among treatments (Table S4). The daily food intake and PE decreased with an 440

increase in dietary protein (Figs. 2E and S2G). The daily protein intake of MII-7 and gonad protein content of MII-2, -4, and -7 were significantly higher than those of MII-0 (P < 0.05; Table S4; Fig. 2G).

444

445 3.5. Experiment LI

446 One individual in the LI-40 treatment group died on November 29. The average BW increased from 12.4 g to >14.9 g in all treatments at the end of the experiment. There 447 448 were no significant differences in the final BW and TD, gonad dry weight, gonad water 449 content, gonad protein content, and specific growth rates in BW and TD among treatments 450 (Tables 3, 5, S1 and S4; Figs. 1F and 1H). GI and weekly increase in GI of LI-20 were significantly higher than those of LI-0 (P < 0.05; Table 5; Fig. 3D). The daily food intake 451 452 decreased, and FE increased with an increase in dietary protein (Figs. 2J and S2J). Protein 453 retention for gonads and PE of LI-15 were significantly higher than those of LI-30 and LI-40 (P < 0.05; Table S4; Fig. S2L), and the daily protein intake of LI-15 was 454 455 significantly lower than that of LI-20, -30, and -40 (P < 0.05; Fig 2L). At the end of the 456 experiment, all individuals had ovaries/testes at stages 2 or 3 (Figs. S3A and S3B). The 457 nutritive phagocytes remained predominant in the gonadal acini of all individuals.

459 3.6. Experiment LII

460	One individual in the LI-10 treatment group died on January 31. The BW increased
461	from 11.3 g to 13.6 g in LII-0 and to >14.7 g in the other treatments, with no significant
462	differences among treatments (Tables 3 and S1). Specific growth rates in BW and TD
463	increased with an increase in dietary gluten content from 0 to 4%, then decreased with an
464	increase in dietary gluten content to 10% (Table S2; Figs. 1E and 1G), suggesting the
465	protein requirement for somatic growth of large size urchins to be <10%. Gonad dry
466	weight and GI of LII-0 were significantly lower than those of the other treatments ($P <$
467	0.001, Tables 5 and S4); a similar tendency was observed with the weekly increase in GI
468	(Fig. 3C). Considering the results of experiment LI, the indicated protein requirement for
469	gonad production of large-sized urchins was >5%. The protein retention for gonads and
470	PE decreased and FE increased with an increase in dietary protein (Table S4; Figs. S2I
471	and S2K). The daily food intake of LII-2 and the daily protein intake of LII-7 were higher
472	than those of the other treatments (Figs. 2I, and 2K). At the end of the experiment, all
473	individuals had ovaries/testes at stage 2 or 3 (Figs. S3C and S3D). Nutritive phagocytes
474	remained predominant in the gonadal acini of all individuals.

475

476 3.7. Protein requirement

477	According to the results of each experiment, data from experiments SII, MII, and LII
478	were used to estimate the protein requirement for somatic growth; those of the
479	experiments MI and LI were used to estimate the protein requirement for gonad
480	production. Broken-line regression analyses between dietary protein content and SGR in
481	BW for small, medium, and large-sized sea urchins predicted the breakpoints of dietary
482	protein to be 2.0% ($r^2 = 0.680$), 2.2% ($r^2 = 0.657$), and 2.0% ($r^2 = 0.846$), respectively
483	(Figs. 4A, 4B and 4C). Analyses of the SGR in TD of large urchins indicated the
484	breakpoints of dietary protein to be 2.2% ($r^2 = 0.794$) (Fig. 4D). Thus, the protein
485	requirement for somatic growth was approximately 2% regardless of the body size (life
486	stage). Broken-line regression analyses between dietary protein content and weekly
487	increase in the GDI for medium- and large-sized sea urchins predicted the breakpoint of
488	dietary protein to be 12.5% ($r^2 = 0.2475$) and 15.3% ($r^2 = 0.527$), respectively, although
489	a significant correlation for the medium-sized urchins was not detected (Figs. 5A and 5B).
490	Thus, the protein requirement for gonad production was $\leq 15\%$ regardless of the body size
491	(life stage).

493 4. Discussion

494 Somatic and gonad growths of *S. intermedius* at different life stages (i.e., before/after

495	gonad differentiation and with/without maturation potential) were investigated in the
496	feeding trials using diets containing 0.6-36.4% protein, with consideration of protein
497	leaching. The broken-line regression analyses on SGRs of BW and TD revealed that the
498	protein requirement for somatic growth was approximately 2%, regardless of sea urchin
499	life stages (Fig. 4). The estimated value of 2% was below the range of protein content in
500	diets (9-50%) used in previous studies that investigated the protein requirement of sea
501	urchins. Analyzing the weekly increase in GDI revealed that the protein requirement for
502	gonad production of medium-sized urchins with semi-transparent gonads (Fuji, 1960)
503	was approximately 13%, without significance, whereas that of large-sized urchins close
504	to the biological minimum size (Fuji, 1960) was approximately 15% (Fig. 5). Thus, the
505	general protein requirement for gonad production was $\leq 15\%$ in both life stages.
506	The protein requirement for gonad production has been investigated in some edible
507	sea urchin species. A comparison of five different diets containing 10-50% protein
508	indicated the protein requirement for gonad production in juvenile Pseudocentrotus
509	depressus (approximately 1.6 g BW) to be 30% (Akiyama et al., 2001). A previous study
510	on young Paracentrotus lividus (approximately 17 g BW) showed that a diet containing
511	30% protein produced the greatest GI increase among six experimental diets with 20-
512	45% protein (Lourenço et al., 2020). The protein requirement of juvenile Lytechinus

513	variegatus (approximately 4 g BW) was suggested to be 30 and 35% when the diet
514	contained 18 and 12% carbohydrates, respectively (Heflin et al., 2016). A feeding
515	experiment on juvenile S. intermedius (approximately 1 g BW) using diets containing 12,
516	18, 24, 30, and 36% protein showed that the GI of sea urchins increased with an increase
517	in dietary protein (Zuo et al., 2017). The protein requirement of juvenile (medium-size
518	group) and young (large-size group) S. <i>intermedius</i> estimated in the present study ($\leq 15\%$)
519	was much lower than the values estimated in previous studies, and was close to that of M .
520	nudus adults (12%, Takagi et al., 2022), which was estimated after eliminating the
521	influence of protein leaching. Takagi et al. (2022) showed that >40% of the protein
522	content in diets can elute out depending on the binder and protein sources. These results
523	indicate that the protein requirement for gonad production is modest in common to S.
524	intermedius and M. nudus, which further indicates that the protein requirement of sea
525	urchins was overestimated in previous studies where protein leaching was not addressed.
526	The drastic difference in the protein requirement for somatic growth determined in
527	the present study (2%) and that estimated in previous studies ($\geq 20\%$, Akiyama et al.,
528	2001; Hammer et al., 2006b; 2012; Zuo et al., 2017) cannot be explained by protein
529	leaching alone. The protein content in the diets used in the present study was <9%, which,
530	to the best of our knowledge, has not been tested in previous studies (Akiyama et al.,

531	2001; Hammer et al., 2006b; 2012; Heflin et al., 2016; Zuo et al., 2017; Lourenço et al.,
532	2020). Similar investigations should be conducted with other species including a dietary
533	protein content of <9%. The protein requirement of S. intermedius is markedly low
534	compared with that of other herbivorous aquaculture species, such as abalone Haliotis
535	discus hannai (23.3–35.6%, Mai et al., 1995) and milk fish Chanos chanos (30%, Hussain
536	et al., 2021). However, the protein requirement levels estimated in the present study were
537	close to the protein content in Laminariales kelp (approximately 4-16%, e.g., Agatsuma
538	et al., 2002; Schiener et al., 2015), which is preferred by edible sea urchins, including S.
539	intermedius and M. nudus, and is commonly used as feed for sea urchin aquaculture
540	(Walker et al., 2015). This suggests that herbivorous sea urchins may have evolved to
541	feed on kelp. Moreover, the protein requirement for somatic growth of S. intermedius is
542	close to that of the deposit-feeder sea cucumber Apostichopus japonicus, which was
543	suggested to be between 6 and 11% (Bai et al., 2016). The low protein requirement might
544	be a common characteristic of echinoderms.

Aging, coupled with an increase in body size in sea urchins, involves a decrease in assimilation efficiency, and an increase in the energy required for maintenance (Fuji, 1967; Fernandez and Boudouresque, 2002). The higher daily intake of food and protein, FE, PE, and SGR of sea urchins in the experiments SI, SII, MI, and MII compared to

549	those in experiments LI and LII (Figs. 1, 2, and S2) would reflect the changes in
550	assimilation efficiency with aging. Nutrients and energy allocated toward somatic growth
551	decrease and those allocated toward gonad production increase with increasing sea urchin
552	size (e.g., Fuji, 1967; Fernandez and Boudouresque, 2002). The protein retention in the
553	gonads of sea urchins was higher in experiments LI and LII than in experiments MI and
554	MII (Table S3), indicating that protein allocation to the gonads increases with aging.
555	However, there were no large variations in the protein requirement among S. intermedius
556	life stages.

557 Nutrient balance in foods regulates the food intake in animals (Simpson & Raubenheimer, 2012). An increase in the food intake with decreasing dietary protein has 558 been demonstrated for P. lividus (Lourenço et al., 2020), M. franciscanus (McBride et al., 559 560 1998; 1999), M. nudus (Takagi et al., 2022) and L. variagatus (Hammer et al., 2004; 561 2006b) as an attempt to compensate for the lack of available protein in the diet (Hammer 562 et al., 2004). As a result, FE decreases with decreasing dietary protein; this tendency was 563 also observed in the present study (Figs. 2 and S2). Meanwhile, the daily food intake of SII-2 and LII-2 was larger than that of SII-0 and LII-0, respectively. Protein is a vital 564 565 macronutrient that supplies amino acids, which play a key role in the maintenance of physiological functions, such as cell signaling, appetite stimulation, energy utilization, 566

567	and immunity, in aquatic animals (Wu et al., 2013; 2014). Mozanzadeh et al. (2018)
568	reported that activities of digestive enzymes, including trypsin, lipase, a-amylase, and
569	carboxypeptidase A, in the sobaity seabream Sparidentex hasta fed protein-free diets were
570	significantly lower than those in individuals fed diets containing protein. The extremely
571	low protein content in the 0% gluten diet may have affected the digestive systems of S.
572	intermedius and impaired food consumption (Figs. 2A and 2I).
573	The estimated protein requirements for somatic growth were approximately 10-15
574	percent point lower than that for gonad production (the present study; Akiyama et al.,
575	2001; Zuo et al., 2017). The difference in protein requirements between somatic and
576	gonad growth may reflect the differences in the protein contents of the test (approximately
577	7%) and gonads (between 40-60%) (Fuji, 1967; the present study). Otero-Villanueva et
578	al. (2004) investigated energy partitioning in <i>Psammechinus miliaris</i> and showed that the
579	energy, which is mostly supplied from dietary carbohydrates (Watts et al., 2020; Powell
580	et al., 2022), allocated to the test was greater than that allocated to the gonads. In the
581	present study, crystalline cellulose was used to adjust the protein content of each diet
582	because sea urchins seldom digest cellulose (Watts et al., 2020); cellulase genes are
583	insufficiently expressed in sea urchins (Trenzado et al., 2012) and in their gut microbes
584	(Haditomo et al., 2021), and cellulase activity in the gut is limited (Obrietan, 1991). In

585	addition, S. intermedius has lower degradation activity towards crystalline cellulose than
586	towards phosphoric acid-swollen cellulose (Hasegawa et al., 2012). In the present study,
587	digestible carbohydrate was supplied from starch and kelp powder. When the dietary
588	carbohydrate is insufficient to generate energy, dietary protein is catabolized to meet the
589	energy demand (Heflin et al., 2016). Therefore, we increased the starch content to the
590	extent possible to supply sufficient amounts of energy and justified the content among all
591	diets. In this case, food intake was proportional to carbohydrate intake. Therefore, the
592	high somatic growth and food intake in SII-2, MII-2, and LII-2 may imply that a higher
593	carbohydrate content is more suitable for somatic growth than for gonad production.
594	Similar to that of the protein content, a wide range of carbohydrate levels in sea urchin
595	diets should be included in future investigations involving body and gonad growth while
596	accounting for nutrient leaching.

The amino acid balance of the diet is a key factor affecting the dietary values of animal feed because a deficiency of essential amino acid in food can result in a decrease in growth in some fish species (e.g., Walton et al., 1986; Davies et al., 1997). In the case of fish diets, supplementation with lysine, an essential amino acid for fish, is required when the protein source is changed from fish to wheat gluten (e.g., Davies et al., 1997; Yamamoto et al., 2001). As noted by Takagi et al. (2022), we cannot exclude the 603 possibility that insufficient lysine content may have been a limiting factor, although 604 neither the essential amino acids for sea urchin nor the required levels for each amino 605 acid are known. In the present study, we selected wheat gluten as the protein source to 606 exclude the possibility of overestimating the protein requirement owing to protein 607 leaching from diets, as described by Takagi et al. (2022). However, using a protein source 608 with a better amino acid composition than that of wheat gluten as the primary protein 609 source for diets may cause a shift in the optimum protein levels to values lower than those 610 obtained in the present study.

611 Climate change is suggested to be a major factor responsible for the decrease in S. 612 intermedius landings in Japan. A decrease in juvenile recruitment of wild S. intermedius owing to an increase in seawater temperature has also been reported in previous studies 613 614 (Gouda et al., 2017; Gouda and Agatsuma, 2020). Moreover, the occurrence of an 615 unprecedented large-scale outbreak of harmful algae in the Pacific coastal waters off the 616 south-eastern coast of Hokkaido during September-November 2021 resulted in mass 617 mortality of the S. intermedius populations in this region (Kuroda et al., 2021; Hasegawa 618 et al., 2022). Therefore, S. intermedius aquaculture would undoubtedly guarantee its 619 production and supply. The growth of S. intermedius until it attains market size requires 620 over three years and includes two steps: somatic growth of small individuals and gonad

621	production of adults (Unuma and Kayaba, 2015). The cultivation period mostly involves
622	somatic growth. The findings of this study suggest that 2% is the optimal dietary protein
623	content for somatic growth, regardless of the life stage of sea urchins; this indicates that
624	the amount of protein in the diets can be reduced considerably. Additionally, a large
625	difference in protein requirements was observed between somatic and gonad growths,
626	suggesting the possibility of designing diets that preferentially promote body or gonad
627	growth. The findings of this study provide useful information that could help improve the
628	production efficiency of sea urchin aquaculture.
629	
630	Data Availability
631	Raw data were generated at the Fisheries Resources Institute. The data that support the
632	findings of this research are available from the corresponding authors upon request.
633	
634	Conflicts of Interest
635	The authors declare no conflicts of interest.
636	
637	Author Contributions
638	ST: conceptualization, methodology, software, validation, formal analysis, investigation,

639	resources, data curation, writing-original draft, and visualization. YS: writing-review
640	and editing, project administration, and funding acquisition. TU: conceptualization,
641	methodology, validation, resources, data curation, writing-review editing, and
642	supervision. The other authors were involved in the investigation, resource collection, and
643	writing—review and editing.
644	
645	Acknowledgments
646	We thank Kazuyuki Sugita and the technical staff at the hatchery in Akkeshi Town for
647	providing sea urchins for the experiments. We are also grateful to Suzuko Tanaka and
648	Yasuko Fuchigami of Kushiro Field Station for their technical assistance throughout the
649	study.
650	
651	Funding
652	This study was conducted as a research project "Priority Research" of the Hokkaido
653	Research Organization.
654	
655	References
656	Agatsuma, Y., 2015. Reseeding of sea urchin in Japan, in: Brown, N.P., Eddy, S.D. (Eds.),

657	Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, pp. 93–102
658	Agatsuma, Y., 2020. Strongylocentrotus intermedius, in: Lawrence, J.M. (Ed.), Sea
659	Urchin Biology and Ecology, 4th edn. Academic Press, Cambridge, pp. 609–625
660	Agatsuma, Y., Yamada, Y., Taniguchi, K., 2002. Dietary effect of the boiled stipe of brown
661	alga Undaria pinnatifida on the growth and gonadal enhancement of the sea urchin
662	Strongylocentrotus nudus. Fish. Sci. 68, 1274–1281. https://doi.org/10.1046/j.1444-
663	2906.2002.00565.x
664	Agatsuma, T., Nataka, A., 2004. Age determination, reproduction and growth of the sea
665	urchin Hemicentrotus pulcherrimus in Oshoro Bay, Hokkaido, Japan. J. Mar. Biol.
666	Asso. U.K 84, 401-405. https://doi.org/10.1017/S0025315404009348h
667	Akiyama, T., Unuma, T., Yamamoto, T., 2001. Optimum protein level in a purified diet
668	for young red sea urchin Pseudocentrotus depressus. Fish. Sci. 67, 361-363
669	Andrew, N.L., Agatsuma, Y., Ballesteros, E., Bazhin, A.G., Creaser, E.P., Barnes, D.K.A.,
670	Botsford, L.W., Bradbury, A., Campbell, A., Dixon, J.D., Einarsson, S., Gerring, P.K.,
671	Hebert, K., Hunter, M., Hur, S.B., Johnson, C.R., Juinio-Meñez, M.A., Kalvass, P.,
672	Miller, R.J., Moreno, C.A., Palleiro, J.S., Rivas, D., Robinson, S.M.L., Schroeter,
673	S.C., Steneck, R.S., Vadas, R.L., Woodby, D.A., Xiaoqi, Z., 2002. Status and
674	management of world sea urchin fisheries. Oceanogr. Mar. Biol. Annu. Rev. 40, 343-

676	Argüello-Guevara, W., Molina-Poveda, C., 2013. Effect of binder type and concentration
677	on prepared feed stability, feed ingestion and digestibility of Litopenaeus vannamei
678	broodstock diets. Aquacult. Nutr. 19, 515–522. https://doi.org/10.1111/anu.12003
679	Bai, Y., Zhang, L., Xia, S., Liu, S., Ru, X., Xu, Q., Zhang, T., Yang, H., 2016. Effects of
680	dietary protein levels on the growth, energy budget, and physiological and
681	immunological performance of green, white and purple color morphs of sea
682	cucumber, <i>Apostichopus japonicus</i> . Aquaculture 450, 375–382.
683	https://doi.org/10.1016/j.aquaculture.2015.08.021
684	de Jong-Westman, Md, March, B.E., Carefoot, T.H., 1995. The effect of different nutrient
685	formulations in artificial diets on gonad growth in the sea urchin Strongylocentrotus
686	droebachiensis. Can. J. Zool. 73, 1495–1502. https://doi.org/10.1139/z95-177
687	Dominy, W.G., Cody, J.J., Terpstra, J.H., Obaldo, L.G., Chai, M.K., Takamori, T.I., Larsen,
688	B., Forster, I.P., 2003. A comparative study of the physical and biological properties
689	of commercially available binders for shrimp feeds. J. Appl. Aquacult. 14, 81-99.
690	https://www.tandfonline.com/doi/abs/10.1300/J028v14n03_07
691	Durazo-Beltrán, E., Viana, M.T., 2001. Effect of the concentration of agar, alginate and
692	carrageenan on the stability, toughness and nutrient leaching in artificial diets for

693 abalone. Cienc. Mar. 27, 1–19

694	FAO, 2022a. Food Balances (-2013, old methodology and population).
695	https://www.fao.org/faostat/en/#data/FBSH (accessed 3 August 2022)
696	FAO, 2022b. Food Balances (2010–). https://www.fao.org/faostat/en/#data/FBS
697	(accessed 3 August 2022)
698	FAO, 2022c. Global Fish Trade and Processed Products Statistics, Fisheries and
699	Aquaculture.
700	https://www.fao.org/fishery/en/collection/global_commodity_prod?lang=en

- 701 (accessed 3 August 2022)
- FAO, 2022d. Global production, Fisheries and Aquaculture.
 https://www.fao.org/fishery/en/collection/global_production?lang=en (accessed 3
 August 2022)
- 705 Fernandez, C., Boudouresque, C.F., 2000. Nutrition of the sea urchin Paracentrotus
- 706 *lividus* (Echinodermata: Echinoidea) fed different artificial food. Mar. Ecol. Prog.

707 Ser. 204, 131–141. https://www.int-res.com/abstracts/meps/v204/p131-141/

- Fuji, A., 1960. Studies on the biology of the sea urchin: I. Superficial and histological
- gonadal changes in gametogenic process of two sea urchins, *Strongylocentrotus*
- 710 *nudus* and *S. intermedius*. Bull. Fac. Fish Hokkaido Univ. 11, 1–14.

711	Fuji, A., 1967. Ecological studies on the growth and food consumption of Japanese
712	common lattoral sea urchin, Strongylocentrotus intermedius. Bull. Fac. Fish.
713	Hokkaido Univ. 15, 83–160. http://hdl.handle.net/2115/21847
714	Gouda, H., Agatsuma, Y., 2020. Effect of high temperature on gametogenesis of the sea
715	urchin Strongylocentrotus intermedius in the Sea of Japan, northern Hokkaido, Japan.
716	J. Exp. Mar. Biol. Ecol. 525, 151324. <u>https://doi.org/10.1016/j.jembe.2020.151324</u>
717	Gouda, H., Endo, H., Agatsuma, Y., 2017. Effect of seawater temperature on long-term
718	recruitment of Strongylocentrotus intermedius juveniles in northeastern Sea of Japan.
719	Reg. Study Mar. Sci. 36–41. <u>https://doi.org/10.1016/j.rsma.2017.07.006</u>
720	Haditomo, A.H.C., Yonezawa, M., Yu, J., Mino, S., Sakai, Y., Sawabe, T., 2021. The
721	structure and function of gut microbiomes of two species of sea urchins,
722	Mesocentrotus nudus and Strongylocentrotus intermedius, in Japan. Front. Mar. Sci.
723	8, 802754. https://doi.org/10.3389/fmars.2021.802754
724	Hammer, B.W., Hammer, H.S., Watts, S.A., Desmond, R.A., Lawrence, J.M., Lawrence,
725	A.L., 2004. The effects of dietary protein concentration on feeding and growth of
726	small Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Biol. 145, 1143-
727	1157. https://doi.org/10.1007/s00227-004-1391-x

Hammer, H., Hammer, B., Watts, S., Lawrence, A., Lawrence, J., 2006a. The effect of

729	dietary protein and carbohydrate concentration on the biochemical composition and
730	gametogenic condition of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol.
731	Ecol. 334, 109–121.
732	https://www.sciencedirect.com/science/article/pii/S0022098106000396
733	Hammer, H., Watts, S., Lawrence, A., Lawrence, J., Desmond, R., 2006b. The effect of
734	dietary protein on consumption, survival, growth, and production of the sea urchin
735	Lytechinus variegatus. Aquaculture 254, 483–495.
736	https://doi.org/10.1016/j.aquaculture.2005.10.047
737	Hammer, H.S., Powell, M.L., Jones, W.T., Gibbs, V.K., Lawrence, A.L., Lawrence, J.M.,
738	Watts, S.A., 2012. Effect of feed protein and carbohydrate levels on feed intake,
739	growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World
740	Aquacult. Soc. 43, 145–158. <u>https://doi.org/10.1111/j.1749-7345.2012.00562.x</u>
741	Hasegawa, N., Watanabe, T., Unuma, T., Yokota, T., Izumida, D., Nakagawa, T.,
742	Kurokawa, T., Takagi, S., Azumaya, T., Taniuchi, Y., Kuroda, H., Kitatsuji, S., Abe,
743	K., 2022. Repeated reaching of the harmful algal bloom of Karenia spp. around the
744	Pacific shoreline of Kushiro, eastern Hokkaido, Japan, during autumn 2021. Fish. Sci.
745	88, 787-803. https://doi.org/10.1007/s12562-022-01642-w

746 Hasegawa, S., Ura, K., Tanaka, H., Ojima, T., Takagi, Y., 2012. Purification and

748

biochemical characterization of a cellulase from the digestive organs of the shortspined sea urchin *Strongylocentrotus intermedius*. Fish. Sci. 78, 1107–1115.

- 749 https://doi.org/10.1007/s12562-012-0528-y
- 750 Hussain, M., Hassan, H.U., Siddique, M.A.M., Mahmood, K., Abdel-Aziz, M.F.A.,
- Laghari, M.Y., Abro, N.A., Gabol, K., Nisar, Rizwan, S., Halima, 2021. Effect of
- varying dietary protein levels on growth performance and survival of milkfish
- 753 *Chanos chanos* fingerlings reared in brackish water pond ecosystem. Egypt. J. Aquat.
- 754 Res. 47, 329–334
- 755 Heflin, L.E., Makowsky, R., Taylor, J.C., Williams, M.B., Lawrence, A.L., Watts, S.A.,
- 756 2016. Production and economic optimization of dietary protein and carbohydrate in
- the culture of juvenile sea urchin *Lytechinus variegatus*. Aquaculture 463, 51–60.
- 758 <u>https://doi.org/10.1016/j.aquaculture.2016.05.023</u>
- 759 Kuroda, H., Azumaya, T., Setou, T., Hasegawa, N., 2021. Unprecedented outbreak of
- harmful algae in Pacific coastal waters off southeast Hokkaido, Japan, during late
- summer 2021 after record-breaking marine heatwaves. J. Mar. Sci. Eng. 9, 1335.
- 762 <u>https://doi.org/10.3390/jmse9121335</u>
- Lawrence, J.M., Zhao, C., Chang, Y.Q., 2019. Large-scale production of sea urchin
- 764 (*Strongylocentrotus intermedius*) seed in a hatchery in China. Aquacult. Int. 27, 1–7.

765 <u>https://doi.org/10.1007/s10499-018-0319-2</u>

766	Liu, H., Chang, Y., 2015. Sea urchin aquaculture in China, in: Brown, N.P., Eddy, S.D.
767	(Eds.), Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, pp. 127–146
768	Lourenço, S., José, R., Andrade, C., Valente, L.M.P., 2020. Growth performance and
769	gonad yield of sea urchin Paracentrotus lividus (Lamarck, 1816) fed with diets of
770	increasing protein: energy ratios. Anim. Feed Sci. Technol. 270, 114690.
771	https://doi.org/10.1016/j.anifeedsci.2020.114690
772	Machiguchi, Y., Takashima, K., Hayashi, H., Kitamura, H., 2012. Effect of marine algae
773	form the eastern part of Hokkaido and feeding period for gonad production of the sea
774	urchin Strongylocentrotus intermedius. Aquaculture Science 60, 323-331.
775	https://doi.org/10.11233/aquaculturesci.60.323
776	Mai, K., Mercer, J.P., Donlon, J., 1995. Comparative studies on the nutrition of two
777	species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV.
778	optimum dietary protein level for growth. Aquaculture 136, 165-180.
779	https://doi.org/10.1016/0044-8486(95)01041-6
780	Mozanzadeh, M.T., Yaghoubi, M., Marammazi, J.G., Safari, O., Gisbert, E., 2018. Effects
781	of dietary protein and essential amino acid deficiencies on growth, body composition,
782	and digestive enzyme activities of silvery-black porgy (Sparidentex hasta). Int. Aquat.

783	Res. 10	, 45–55.	https://doi.or	g/10.1007.	/s40071-017-0187-9
-----	---------	----------	----------------	------------	--------------------

- 784 McBride, S.C., 2005. Sea urchin aquaculture. Am. Fish. Soc. Symp. 46, 179–208
- 785 McBride, S.C., Lawrence, J.M., Lawrence, A.L., Mulligan, T.J., 1998. The effect of
- protein content in prepared feeds on growth, feeding rate, total organic absorption,
- and gross assimilation efficiency of the sea urchin *Strongylocentrotus franciscanus*.
- 788 J. Shellfish Res. 17, 1563–1570
- 789 McBride, S.C., Lawrence, J.M., Lawrence, A.L., Mulligan, T.J., 1999. Ingestion,
- absorption, and gonad production of adult Strongylocentrotus franciscanus fed
- different rations of a prepared diet. J. World Aquacult. Soc. 30, 364–370.
- 792 <u>https://doi.org/10.1111/j.1749-7345.1999.tb00687.x</u>
- 793 Meidel, S.K., Scheibling, R.E., 1999. Effects of food type and ration on reproductive
- maturation and growth of the sea urchin *Strongylocentrotus droebachiensis*. Mar.
- 795 Biol. 134, 155–166. <u>https://doi.org/10.1007/s002270050534</u>
- 796 Metropolitan, Central Wholesale Market, 2022. Market Statistical Information.
- 797 http://www.shijou-tokei.metro.tokyo.jp/ (accessed 11 August 2022)
- Minor, M.A., Scheibling, R.E., 1997. Effects of food ration and feeding regime on growth
- and reproduction of the sea urchin *Strongylocentrotus droebachiensis*. Mar. Biol. 129,
- 800 159–167. https://doi.org/10.1007/s002270050156

801	Obrietan, K., Drinkwine, M., Williams, D.C., 1991. Amylase, cellulase and protease
802	activities in surface and gut tissues of Dendraster excentricus, Pisaster ochraceus
803	and Strongylocentrotus droebachiensis (Echinodermata). Mar. Biol. 109, 53-57
804	Otero-Villanueva, MdM., Kelly, M.S., Burnell, G., 2004. How diet influences energy
805	partitioning in the regular echinoid Psammechinus miliaris; constructing an energy
806	budget. J. Exp. Mar. Biol. Ecol. 304, 159–181.
807	https://doi.org/10.1016/j.jembe.2003.12.002
808	Pearce, C.M., 2010. Introduction: sea-urchin aquaculture. Bull. Aquac Assoc. Can. 108-
809	1, 1–2
810	Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2002. Effect of protein source ratio and
811	protein concentration in prepared diets on gonad yield and quality of the green sea
812	urchin, Strongylocentrotus droebachiensis. Aquaculture 214, 307-332.
813	https://doi.org/10.1016/S0044-8486(02)00041-8
814	Powell, M.L., Marsh, A.G., Watts, S.A., 2020. Biochemical and energy requirements of
815	gonad development in regular sea urchins, in: Lawrence, J.M. (Ed.), Sea Urchin
816	Biology and Ecology, 4th edn. Academic Press, Cambridge, pp. 51-64
817	Schiener, P., Black, K.D. Stanley, M.S., Green, D.H., 2015. The seasonal variation in the
818	chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea,

- 819 Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 27, 363–373.
 820 https://doi.org/10.1007/s10811-014-0327-1
- 821 Simpson, S.J., Raubenheimer, D., 2012. The Nature of Nutrition: A Unifying Framework
- From Animal Adaptation to Human Obesity. Princeton University Press, Princeton,
 NJ, USA
- 824 Sudo, K., Watanabe, K., Yotsukura, N., Nakaoka, M., 2020. Predictions of kelp
- distribution shifts along the northern coast of Japan. Ecol. Res. 35, 47–60.
- 826 <u>https://doi.org/10.1111/1440-1703.12053</u>
- 827 Sun, J., Chiang, F.S., 2015. Use and exploitation of sea urchins, in: Brown, N.P., Eddy,
- 828 S.D. (Eds.), Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, pp. 25–45
- Takagi, S., Takahashi, K., Kaneta, T., Sugawara, A., Narita, M., Akino, K., Takeda, H.,
- 830 Hasegawa, N., Machiguchi, Y., Unuma, T., 2022. Modest dietary protein requirement
- for sea urchin gonad production demonstrated by feeding trials with consideration of
- 832 protein leaching. Aquacult. Nutr., 3140222. <u>https://doi.org/10.1155/2022/3140222</u>
- 833 Trenzado, C.E., Hidalgo, F., Villanueva, D., Furné, M., Díaz-Casado, M.E., Merino, R.,
- 834 Sanz, A., 2012. Study of the enzymatic digestive profile in three species of
- 835 Mediterranean Sea urchins. Aquaculture 344–349, 174–180.
- 836 https://doi.org/10.1016/j.aquaculture.2012.03.027

837	Unuma, T., 2002. Gonadal growth and its relationship to aquaculture in sea urchins, in:
838	The Sea Urchin: From Basic Biology to Aquaculture. Swets & Zeitlinger, Lisse,
839	Netherlands, pp. 115–127
840	Unuma, T., 2015. Introduction: sea urchin fisheries in Japan, in: Brown, N.P., Eddy, S.D.
841	(Eds.), Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, pp. 77–85
842	Unuma, T., Kayaba, T., 2015. Land-based and captive sea-based grow out (cultivation of
843	seed to market size). Sea urchin aquaculture in Japan, in: Brown, N.P., Eddy, S.D.
844	(Eds.), Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, pp. 103–126
845	Walker, C.W., Böttger, S.A., Unuma, T., Watts, S.A., Harris, L.G., Lawrence, A.L., Eddy,
846	S.D., 2015. Enhancing the commercial quality of edible sea urchin gonads-
847	technologies emphasizing nutritive phagocytes, in: Brown, N.P., Eddy, S.D. (Eds.),
848	Echinoderm Aquaculture. Wiley-Blackwell, Hoboken, USA, pp. 263–286
849	Watts, S.A., Lawrence, A.L., Lawrence, J.M., 2020. Nutrition, in: Lawrence, J.M. (Ed.),
850	Sea Urchin Biology and Ecology, 4th edn. Academic Press, Cambridge, USA, pp.
851	191–208
852	Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., Wang, B., Wang, J., Yin, Y., 2013.
853	Dietary requirements of "nutritionally nonessential amino acids" by animals and
854	humans. Amino Acids 44, 1107–1113

855	Wu, G., Bazer, F.W., Dai, Z., Li, D., Wang, J., Wu, Z., 2014. Amino acid nutrition in
856	animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2, 387-417
857	Zuo, R., Hou, S., Wu, F., Song, J., Zhang, W., Zhao, C., Chang, Y., 2017. Higher dietary
858	protein increases growth performance, anti-oxidative enzymes activity and
859	transcription of heat shock protein in the juvenile sea urchin (Strongylocentrotus
860	intermedius) under a heat stress. Aquacult. Fish. 2, 18–23.
861	https://doi.org/10.1016/j.aaf.2017.01.005

863 Table 1. Ingredient concentration, proximate composition, and weight change ratio after seawater immersion of the artificial diets with

864	various gluten concenti	ations fed to	Strongylocentrotus	intermedius in	each experiment.
-----	-------------------------	---------------	--------------------	----------------	------------------

Wheat gluten	Concentration of other ingredients (%dry weight)			Water	Proximate composition (%dry weight)			position ght)	Protein content	Weight	Experiment	
(%dry weight)	Cellulose	Potato starch	Kelp ^a	(outer percentage)	Protein	Lipid	Ash	Carbohydrate	(%dry weight)	ratio ^d	using the diets	
0	40	50	10	60	0.9	< 0.1	5.0	94.2	0.6	0.37	SII, MII, LII	
2	38	50	10	60	2.6	< 0.1	5.1	92.3	1.9	0.41	SII, MII, LII	
4	36	50	10	60	4.0	< 0.1	5.1	90.9	3.3	0.39	SII, MII, LII	
5	35	50	10	60	5.3	0.1	5.0	89.6	4.5	0.40	SI, MI, LI	
7	33	50	10	60	7.8	0.1	5.1	87.1	5.6	0.45	SII, MII, LII	
10	30	50	10	60	9.9	0.1	5.0	85.0	9.0	0.35	SI, SII, MI, MII, LI, LII	
15	25	50	10	60	14.8	0.1	5.1	80.1	13.0	0.33	SI, MI, LI	
20	20	50	10	60	19.4	0.1	5.3	75.2	17.6	0.34	SI, MI, LI	
30	10	50	10	60	29.2	0.2	5.0	65.5	25.9	0.35	SI, MI, LI	
40	0	50	10	60	37.0	0.2	5.4	57.4	36.4	0.32	SI, MI, LI	

865 Artificial diets were cut into moist sheets of approximately $5-8 \times 5-8 \times 1-3$ mm dimension for experiments SI and SII, $8-15 \times 8-15 \times 2-15$

5 mm for experiments MI and MII, and $20-70 \times 10-20 \times 2-5$ mm for experiments LI and LII.

867 ^a *Saccharina japonica* var. *diabolica* powder.

^bCalculated by subtracting the ash, crude protein, and crude lipid contents from the total dry matter.

- ^c Mean values of protein content in diets after 24 and 72 h immersion.
- ^d Calculated by dividing the dry weight of the diet after immersion by the wet weight of the diet before immersion.

871 Table 2. Three size groups of *Strongylocentrotus intermedius* at different life stages

	S	М	L
Body weight (g)	0.08–0.16	0.6–1.8	9–18
Age (yr)	0+	0+	1+
Life stage	before gonad differentiation	possessing small five semi- transparent gonads visible to the naked eye	reaching the biological minimum size

873 S, small-sized; M, medium-sized; L, large-sized sea urchins.

Fyneriment	Treatment	Body	weight
		Start	End
Experiment SI	SI-5	120.7 ± 0.3	213.7 ± 15.3
$(N_{cage} = 3, n = 18)$	SI-10	120.9 ± 0.3	204.1 ± 10.6
19 days	SI-15	120.9 ± 0.5	206.8 ± 10.8
	SI-20	120.9 ± 0.3	202.8 ± 12.8
	SI-30	121.0 ± 0.3	206.9 ± 3.0
	SI-40	121.0 ± 0.2	204.1 ± 8.7
Experiment SII	SII-C	118.9 ± 20.7	-
$(N_{cage} = 3, n = 18)$	SII-0	118.9 ± 0.8	176.6 ± 16.8^{b}
30 days	SII-2	118.9 ± 0.5	225.9 ± 4.4^{a}
	SII-4	119.0 ± 0.9	230.2 ± 22.1^{a}
	SII-7	119.1 ± 0.4	$221.2\pm11.1^{\rm a}$
	SII-10	118.9 ± 0.8	209.1 ± 8.6^{a}
Experiment MI	MI-C	1038.2 ± 192.7	-
$(N_{cage} = 3, n = 15)$	MI-5	1039.4 ± 10.1	1561.3 ± 61.4
28 days	MI-10	1039.5 ± 8.2	1495.5 ± 30.2
	MI-15	1038.5 ± 8.9	1492.3 ± 20.0
	MI-20	1039.1 ± 11.6	1476.7 ± 105.2
	MI-30	1039.2 ± 12.9	1481.7 ± 69.7
	MI-40	1040.0 ± 11.2	1461.8 ± 46.8
Experiment MII	MII-C	1049.3 ± 441.7	-
$(N_{cage} = 3, n = 15)$	MII-0	1050.9 ± 68.3	1501.3 ± 89.7
30 days	MII-2	1050.1 ± 67.8	1700.1 ± 138.0
	MII-4	1048.9 ± 70.4	1764.4 ± 74.3
	MII-7	1048.8 ± 70.3	1752.8 ± 67.4
	MII-10	1049.7 ± 110.4	1731.5 ± 117.0
Experiment LI	LI-C	12.4 ± 1.9	-
$(N_{cage} = 3, n = 18)$	LI-5	12.3 ± 0.1	14.9 ± 0.4
34 days	LI-10	12.4 ± 0.1	15.3 ± 0.3
	LI-15	12.3 ± 0.0	15.3 ± 0.7
	LI-20	12.4 ± 0.1	15.4 ± 0.4
	LI-30	12.4 ± 0.1	15.6 ± 0.6
	LI-40	12.4 ± 0.3	15.2 ± 0.4

Table 3. Body weights of *Strongylocentrotus intermedius* fed diets with different protein
contents in each experiment.

Experiment LII	LII-C	11.5 ± 1.6	-
$(N_{cage} = 2, n = 12)$	LII-0	11.3 ± 0.1	13.6 ± 0.0
34 days	LII-2	11.4 ± 0.1	14.8 ± 0.2
	LII-4	11.3 ± 0.0	15.0 ± 0.3
	LII-7	11.4 ± 0.1	14.7 ± 0.1
	LII-10	11.3 ± 0.1	14.8 ± 0.2

The measurement units are "mg" in Experiment SI, SII, MI, and MII, and "g" in Experiment LI and LII. Treatment names are abbreviated according to the experiment names and gluten content in diets. SII-C, MI-C, MII-C, LI-C, and LII-C indicate the initial sea urchins used as control that were dissected at the beginning of each experiment (n = 12). Superscript letters indicate significant differences among treatments (P < 0.05 using the Tukey–Kramer method). Values represent the mean ± SD of three cages, with the exception of initial controls.

Experiment	Treatment Gonad index		Gonad water content		
Experiment MI	MI-C	2.6 ± 1.2	68.6 ± 2.8		
$(N_{cage} = 3, n = 15)$	MI-5	$7.8\pm0.5^{\rm b}$	71.1 ± 0.9		
	MI-10	9.5 ± 1.2^{ab}	72.6 ± 2.9		
	MI-15	11.3 ± 0.6^{a}	71.8 ± 0.7		
	MI-20	11.3 ± 1.0^{a}	72.6 ± 1.3		
	MI-30	9.9 ± 0.5^{ab}	74.1 ± 0.4		
	MI-40	10.2 ± 1.0^{ab}	75.2 ± 1.6		
Experiment MII	MII-C	2.3 ± 1.3	73.5 ± 7.2		
$(N_{cage} = 3, n = 15)$	MII-0	$4.6\pm0.2^{\rm c}$	$67.9\pm0.8^{\rm c}$		
	MII-2	$8.7\pm1.7^{\rm b}$	$69.7 \pm 1.3^{\text{b}}$		
	MII-4	$11.8\pm0.6^{\rm a}$	70.6 ± 0.3^{ab}		
	MII-7	$12.9\pm1.3^{\rm a}$	71.1 ± 0.2^{ab}		
	MII-10	$13.4 \pm 1.8^{\rm a}$	$71.8\pm0.6^{\rm a}$		

Table 4. Gonad indices and gonad water content of *Strongylocentrotus intermedius* fed
diets with different protein contents in the experiments MI and MII.

The abbreviations for each treatment are defined in Table 3. Superscript letters indicate significant differences among treatments at the end of the experiment (P < 0.05 using the Tukey–Kramer method). Values represent the mean \pm SD of three cages, with the exception of initial controls.

895

Experiment	Treatment	Test diar	meter (mm)	Gonad index	Gonad water	
r		Start	End		content (%)	
Experiment LI	LI-C	29.93 ± 1.79	-	9.0 ± 1.7	70.7 ± 2.1	
$(N_{cage} = 3, n = 18)$	LI-5	29.81 ± 0.24	31.53 ± 0.35	$16.3\pm1.0^{\rm b}$	73.3 ± 0.7	
	LI-10	29.93 ± 0.11	31.76 ± 0.39	18.3 ± 1.2^{ab}	73.4 ± 0.6	
	LI-15	29.81 ± 0.11	31.65 ± 0.43	$19.3\pm0.4^{\rm a}$	73.4 ± 0.1	
	LI-20	29.95 ± 0.17	31.69 ± 0.21	$19.7\pm0.2^{\rm a}$	72.9 ± 0.9	
	LI-30	30.11 ± 0.28	31.69 ± 0.41	18.3 ± 1.7^{ab}	73.6 ± 0.3	
	LI-40	29.78 ± 0.53	31.25 ± 0.46	17.9 ± 1.3^{ab}	74.4 ± 0.2	
Experiment LII	LII-C	29.12 ± 1.53	-	8.57 ± 1.81	76.8 ± 2.5	
$(N_{cage} = 2, n = 12)$	LII-0	29.03 ± 0.00	30.48 ± 0.24	$9.76\pm0.14^{\rm b}$	72.8 ± 0.0	
	LII-2	29.19 ± 0.15	31.25 ± 0.21	$15.61\pm0.07^{\rm a}$	73.3 ± 0.7	
	LII-4	29.04 ± 0.11	31.19 ± 0.22	$17.02\pm0.38^{\rm a}$	74.0 ± 0.2	
	LII-7	28.93 ± 0.00	30.79 ± 0.08	$17.03 \pm 1.35^{\rm a}$	74.3 ± 0.2	
	LII-10	28.78 ± 0.03	30.47 ± 0.03	16.39 ± 1.07^{a}	74.0 ± 0.5	

896 Table 5. Test diameter, gonad indices, and gonad water content of *Strongylocentrotus intermedius* fed diets with different protein contents

897 in the experiments LI and LII

898

899 The abbreviations for each treatment are defined in Table 3. Superscript letters indicate significant differences among treatments at the

900 end of the experiment (P < 0.05 using the Tukey–Kramer method). Values represent the mean \pm SD of the three cages, with the exception

901 of initial controls.

Fig. 1. Specific growth rate in body wet weight (BW) and test diameter (TD) of *Strongylocentrotus intermedius* fed diets with different protein contents. A, C, E, G; sea urchins fed with 0–10% gluten diets. B, D, F, H; sea urchins fed with 5–40% gluten diets. The values are presented as the mean \pm standard deviation of the cages, each of which contained six sea urchins for the small- and large-sized groups and five sea urchins for the medium-sized group. Superscript letters indicate significant differences among treatments (P < 0.05 using the Tukey–Kramer method).

Fig. 2. Daily food (% body wet weight/day) and protein intake (% body wet weight/day) of *Strongylocentrotus intermedius* fed diets containing varying levels of protein. A, C, E, G, I, K; sea urchins fed with 0–10% gluten diets. B, D, F, H, J, L; sea urchins fed with 5–40% gluten diets. The values are presented as the mean \pm standard deviation of the cages, each of which contained six sea urchins for the small- and large-sized groups and five sea urchins for the medium-sized group. Superscript letters indicate significant differences among treatments (P < 0.05 using the Tukey–Kramer method).

Fig. 3. Weekly increase in the gonad index of *Strongylocentrotus intermedius* fed diets containing varying levels of protein. A, C; sea urchins fed with 0-10% gluten diets. B, D; sea urchins fed with 5-40% gluten diets. The values are presented as the mean \pm standard deviation of the cages, each of which contained five sea urchins for the medium-sized group and six sea urchins for the large-sized group. Superscript letters indicate significant differences among treatments (P < 0.05 using the Tukey–Kramer method).

Fig. 4. Relationship between dietary protein content and the specific growth rate in *Strongylocentrotus intermedius* fed with 0–10% gluten diets. A; body weight (BW) of small urchins. B; BW of medium-sized urchins. C; BW of large-sized urchins. D; test diameter (TD) of large urchins. Broken-line regression model (solid line) was used to estimate the protein requirement for somatic growth.

Fig. 5. Relationship between dietary protein content and weekly increase in gonad dry matter index (GDI) of *Strongylocentrotus intermedius* fed with 5–40% gluten diets. A; medium-sized urchins. B; large-sized urchins. Solid and dashed lines indicate the estimated broken-line regression models with and without significance, respectively.

Supplementary materials

Dietary protein requirement for somatic growth and gonad production in the sea urchin *Strongylocentrotus intermedius* at different life stages

Satomi Takagi, Natsuki Hasegawa, Tsuyoshi Watanabe, Yuichi Sakai, Tatsuya Unuma

1. Supplementary Information

Supplementary Information S1. Proximate composition analyses

All samples for proximate analyses were pulverized, and part of the powdered sample was dried at 105 °C 24 h to eliminate all moisture from the samples. The nitrogen contents of the dried diet samples, dried urchin whole bodies from experiment SII, and dried gonads from experiments MI, MII, LI, and LII were analyzed using a CHN analyzer (Flash EA1112, Thermo Finnigan, CA, USA) with acetanilide as a standard based on the combustion method. The crude protein content of the samples was estimated by multiplying the corresponding nitrogen values with 6.25. Crude lipid was extracted by treating the samples with diethyl ether using a Soxhlet apparatus. Ash content was determined by measuring the weight loss in the samples after ignition in a muffle furnace at 550 °C for 12 h. The carbohydrate content was determined by subtracting the ash, crude protein, and crude lipid contents from the total dry matter (AOAC 1990).

Reference

AOAC, 1990. Official methods of analysis of the Association of Official Analytical Chemists, 15th Edn, Vol. 1. Association of Official Analytical Chemists Inc., Arlington, TX, USA.

2. Supplementary Tables

Table S1	Nested	ANOVA	results	of the	data	from	Strongylocentrotus	intermedius	subjected	to	different
treatment	s under e	ach feedir	ng exper	riment.							

Experiment	er eden reeding experim		DF	SS	MS	F	Р
SI	BW at the beginning	Treatment	5	1	0.2	0.000	1.000
	0 0	Treatment: basket	6	2	0.4	0.001	1.000
		Residuals	96	46572	485.1		
	BW at the end	Treatment	5	1390	277.9	0.118	0.988
		Treatment: basket	6	4143	690.5	0.294	0.938
		Residuals	96	225144	2345.2		
SII	BW at the beginning	Treatment	4	0	0.1	0.000	1.000
		Treatment: basket	5	27	5.4	0.016	1.000
		Residuals	80	26228	327.8		
	BW at the end	Treatment	4	33711	3.74	3.740	0.008
		Treatment: basket	5	10609	0.942	0.942	0.459
		Residuals	80	180283			
	BDW	Treatment	4	8548	2137	9.268	< 0.001
		Treatment: basket	5	223	44.6	0.193	0.964
		Residuals	80	18447	230.6		
MI	BW at the beginning	Treatment	5	18	4	0.000	1.000
		Treatment: basket	6	6446	1074	0.028	1.000
		Residuals	78	3038364	38953		
	BW at the end	Treatment	5	131362	26272	0.309	0.906
		Treatment: basket	6	92277	15379	0.181	0.981
		Residuals	78	6621480	84891		
	GI	Treatment	5	128.8	25.767	3.566	0.006
		Treatment: basket	6	20.1	3.357	0.465	0.833
		Residuals	78	563.6	7.226		
	Gonad dry weight	Treatment	5	1291	258.3	0.950	0.454
		Treatment: basket	6	903	150.5	0.553	0.766
		Residuals	78	21213	272		
	Gonad water content	Treatment	5	169.7	33.95	4.290	0.002
		Treatment: basket	6	107.5	17.91	2.264	0.046
		Residuals	78	617.2	7.91		
MII	BW at the beginning	Treatment	4	46	11	0.000	1.000
		Treatment: basket	5	246855	49371	0.206	0.959
		Residuals	65	15568608	239517		
	BW at the end	Treatment	4	703825	175956	0.311	0.870
		Treatment: basket	5	406331	81266	0.144	0.981
		Residuals	65	36793645	566056		
	GI	Treatment	4	807.3	201.83	22.559	< 0.001
		Treatment: basket	5	23.4	4.69	0.524	0.757
		Residuals	65	581.6	8.95		
	Gonad dry weight	Treatment	4	21721	5430	3.567	0.011
		Treatment: basket	5	3080	616	0.405	0.844
		Residuals	65	98968	1523		
	Gonad water content	Treatment	4	135.1	33.78	11.979	< 0.001
		Treatment: basket	5	16.4	3.28	1.163	0.337

		Residuals	65	183.3	2.82		
LI	BW at the beginning	Treatment	5	0.1	0.02	0.004	1.000
		Treatment: cage	6	1.6	0.259	0.055	0.999
		Residuals	96	455.3	4.743		
	TD at the beginning	Treatment	5	1.4	0.286	0.086	0.994
		Treatment: cage	6	4.2	0.703	0.210	0.973
		Residuals	96	320.6	3.34		
	BW at the end	Treatment	5	4.4	0.878	0.137	0.983
		Treatment: cage	6	6.7	1.114	0.174	0.983
		Residuals	95	607.9	6.399		
	TD at the end	Treatment	5	3	0.596	0.177	0.971
		Treatment: cage	6	3.8	0.637	0.189	0.979
		Residuals	95	320.4	3.373		
	GI	Treatment	5	130.1	26.02	4.411	0.001
		Treatment: cage	6	74.5	12.421	2.106	0.060
		Residuals	95	560.3	5.898		
	Gonad dry weight	Treatment	5	0.389	0.078	2.303	0.051
		Treatment: cage	6	0.213	0.036	1.052	0.397
		Residuals	95	3.214	0.034		
	Gonad water content	Treatment	5	23.6	4.727	0.849	0.519
		Treatment: cage	6	15.6	2.594	0.466	0.832
		Residuals	95	529.3	5.571		
LII	BW at the beginning	Treatment	4	0.23	0.057	0.034	0.998
		Treatment: cage	5	0.57	0.114	0.069	0.996
		Residuals	49	81.13	1.656		
	TD at the beginning	Treatment	4	1.9	0.475	0.292	0.882
		Treatment: cage	5	0.39	0.078	0.048	0.999
		Residuals	49	79.82	1.629		
	BW at the end	Treatment	4	14.72	3.679	1.386	0.252
		Treatment: cage	5	1.25	0.25	0.094	0.993
		Residuals	49	130.04	2.654		
	TD at the end	Treatment	4	6.49	1.623	0.904	0.469
		Treatment: cage	5	0.979	0.194	0.108	0.990
		Residuals	49	87.9	1.794		
	GI	Treatment	4	450.9	112.72	28.092	< 0.001
		Treatment: cage	5	18.1	3.62	0.903	0.487
		Residuals	49	196.6	4.01		
	Gonad dry weight	Treatment	4	0.769	0.192	13.358	< 0.001
		Treatment: cage	5	0.038	0.008	0.522	0.759
		Residuals	49	0.706	0.014		
	Gonad water content	Treatment	4	16.76	4.189	2.177	0.085
		Treatment: cage	5	4.94	0.988	0.513	0.765
		Residuals	49	94.3	1.924		

BW, body wet weight; BDW, body dry weight; GI, gonad index; TD, test diameter

		Specific growth rate
Experiment SI	SI 5	$\frac{10 \text{ body weight (\%/day)}}{3.0 \pm 0.4}$
Experiment SI (N = $2 \text{ n} = 1^{\circ}$)	SI-3 SI 10	5.0 ± 0.4
$(1N_{cage} = 5, n = 18)$	SI-10	2.8 ± 0.3
19 days	SI-15	2.8 ± 0.3
	SI-20	2.7 ± 0.3
	SI-30	2.8 ± 0.1
	SI-40	2.7 ± 0.2
Experiment SII	SII-0	1.3 ± 0.3^{b}
$(N_{cage} = 3, n = 18)$	SII-2	2.1 ± 0.1^{a}
30 days	SII-4	2.2 ± 0.3^{a}
	SII-7	2.1 ± 0.2^{a}
	SII-10	$1.9\pm0.2^{\rm a}$
Experiment MI	MI-5	1.5 ± 0.2
$(N_{cage} = 3, n = 15)$	MI-10	1.3 ± 0.0
28 days	MI-15	1.3 ± 0.0
	MI-20	1.2 ± 0.3
	MI-30	1.3 ± 0.1
	MI-40	1.1 ± 0.1
Experiment MII	MII-0	$1.2\pm0.1^{\text{b}}$
$(N_{cage} = 3, n = 15)$	MII-2	$1.6\pm0.2^{\mathrm{a}}$
30 days	MII-4	$1.7\pm0.2^{\mathrm{a}}$
	MII-7	$1.7\pm0.1^{\mathrm{a}}$
	MII-10	$1.7\pm0.1^{\mathrm{a}}$
Experiment LI	LI-5	0.55 ± 0.05
$(N_{cage} = 3, n = 18)$	LI-10	0.61 ± 0.06
34 days	LI-15	0.63 ± 0.12
	LI-20	0.64 ± 0.05
	LI-30	0.67 ± 0.10
	LI-40	0.60 ± 0.01
Experiment LII	LII-0	0.53 ± 0.01
$(N_{cage} = 2, n = 12)$	LII-2	0.77 ± 0.02
34 days	LII-4	0.82 ± 0.04
2	LII-7	0.75 ± 0.00
	LII-10	0.78 ± 0.07

Table S2. Specific growth rate in body wet weight of *Strongylocentrotus intermedius* fed diets with different protein contents.

The abbreviations for each treatment are defined in Table 3. Superscript letters indicate significant differences among treatments at the end of the experiment. Values represent the mean \pm SD of three cages.

Table S3. Body dry weight, protein content, and protein retention of *Strongylocentrotus intermedius* fed diets containing varying levels of protein in experiment SII.

Experiment	Treatment	Body dry weight (mg)	Body protein content (%)	Protein retention (%)
Experiment SII	SII-C	40.6 ± 6.8	11.0 ± 0.8	—
$(N_{cage} = 3, n = 18)$	SII-0	$56.3\pm2.8^{\rm b}$	$9.6\pm0.2^{\text{b}}$	$68.8\pm11.03^{\mathrm{a}}$
	SII-2	$78.3\pm3.0^{\rm a}$	$10.7\pm0.5^{\mathrm{a}}$	$65.9\pm3.33^{\rm a}$
	SII-4	$81.8\pm4.1^{\rm a}$	11.4 ± 0.3^{a}	67.0 ± 1.30^{a}
	SII-7	$82.3\pm0.8^{\rm a}$	11.2 ± 0.2^{a}	36.3 ± 4.18^{b}
	SII-10	$79.1\pm0.7^{\rm a}$	11.0 ± 0.3^{a}	$42.9\pm3.07^{\text{b}}$

The abbreviations for each treatment are defined in Table 3. Superscript letters indicate significant differences among treatments at the end of the experiment. Values represent the mean \pm SD of three baskets, with the exception of SII-C (n = 12).

Fyperiment	Treatment	Gonad dry weight	Gonad protein	Protein retention for
Experiment	Treatment	(mg)	content (%)	gonad (%)
Experiment MI	MI-C	9.1 ± 5.1	29.8 ± 2.5	_
$(N_{cage} = 3, n = 15)$	MI-5	37.1 ± 2.1	33.7 ± 1.2	19.1 ± 2.5
	MI-10	40.3 ± 8.6	35.6 ± 2.2	22.3 ± 5.5
	MI-15	47.9 ± 3.8	33.3 ± 0.6	22.1 ± 4.7
	MI-20	45.5 ± 2.8	32.3 ± 1.1	16.5 ± 3.2
	MI-30	39.0 ± 2.9	35.3 ± 1.3	14.5 ± 0.9
	MI-40	39.9 ± 6.5	34.6 ± 2.0	16.7 ± 4.4
Experiment MII	MII-C	7.0 ± 5.9	34.4 ± 4.0	_
$(N_{cage} = 3, n = 15)$	MII-0	$25.5\pm4.6^{\rm b}$	$28.0\pm1.3^{\rm b}$	35.4 ± 17.6
	MII-2	50.4 ± 13.9^{ab}	$34.4\pm0.6^{\rm a}$	34.6 ± 13.6
	MII-4	64.8 ± 3.1^{a}	$35.5\pm2.6^{\rm a}$	28.3 ± 13.6
	MII-7	$70.6\pm8.4^{\mathrm{a}}$	32.7 ± 1.1^{a}	21.4 ± 5.8
	MII-10	$69.9 \pm 14.2^{\rm a}$	32.0 ± 1.1^{ab}	26.0 ± 8.5
Experiment LI	LI-C	0.33 ± 0.07	45.8 ± 4.2	_
$(N_{cage} = 3, n = 18)$	LI-5	0.65 ± 0.04	44.8 ± 2.2	25.2 ± 3.0^{bc}
	LI-10	0.75 ± 0.05	45.8 ± 2.1	34.1 ± 5.4^{ab}
	LI-15	0.78 ± 0.02	45.3 ± 0.6	$39.5\pm3.0^{\mathrm{a}}$
	LI-20	0.84 ± 0.07	44.0 ± 0.9	27.6 ± 3.3^{bc}
	LI-30	0.74 ± 0.08	47.8 ± 3.5	$20.5\pm3.3^{\circ}$
	LI-30	$0.7 \ 0 \pm 0.06$	46.4 ± 0.6	$18.1 \pm 2.7^{\circ}$
Experiment LII	LII-C	0.06 ± 0.03	57.5 ± 6.3	_
$(N_{cage} = 2, n = 12)$	LII-0	0.36 ± 0.00^{b}	46.5 ± 2.6	110.3 ± 3.0
	LII-2	$0.62\pm0.01^{\rm a}$	47.3 ± 1.7	55.0 ± 2.1
	LII-4	0.67 ± 0.03^{a}	49.5 ± 1.4	56.6 ± 2.1
	LII-7	$0.64\pm0.04^{\rm a}$	49.8 ± 3.8	56.6 ± 2.5
	LII-10	$0.63\pm0.07^{\rm a}$	48.8 ± 2.3	33.9 ± 2.5

Table S4. Gonad dry weight, gonad protein content, and protein retention for gonad of *Strongylocentrotus intermedius* fed diets containing varying levels of protein in the experiments MI, MII, LI, and LII.

The abbreviations for each treatment are defined in Table 3. Superscript letters indicate significant differences among treatments at the end of the experiment. Values represent the mean \pm SD of three cages, with the exception of initial controls (n = 12).

1 3. Supplementary figures

2

3

4 Figure S1. Protocol of artificial diet preparation for *Strongylocentrotus intermedius*. All dry 5 ingredients were thoroughly mixed in a bowl, water was added, and the mixture was kneaded.

6 The mixture was then placed in a plastic bag and rolled out. The starch diet mixture was heated 7 in boiling water for 30 min and cooled in iced water. The prepared diets were stored at 4 °C until

- 8 further use.
- 9

Figure S2. Food efficiency (%) and protein efficiency (%) of *Strongylocentrotus intermedius* fed diets containing varying levels of protein. A, C, E, G, I, K; sea urchins fed with 0%–10% gluten diets. B, D, F, H, J, L; sea urchins fed with 5–40% gluten diets. The values are presented as the mean \pm standard deviation of two or three cages, each of which contained six sea urchins for the small- and large- sized groups and five sea urchins for medium-sized group. Superscript letters indicate significant differences among treatments (P < 0.05 using the Tukey–Kramer method).

17

18 19

Figure S3. Frequency distribution of the gonad maturation stages of *Strongylocentrotus intermedius* at the end of the experiments LI and LII. A; females in experiment LI. B; males in experiment LI. C; females in experiment LII. D; males in experiment LII. Numerals in parentheses represent the number of individuals.