2000年秋にオホーツク海南西部で採集されたサケ幼魚の起源

メタデータ	=甄· English
メタナータ	言語: English
	出版者: さけ・ます資源管理センター
	公開日: 2024-04-05
	キーワード (Ja):
	キーワード (En): juvenile chum salmon; distribution;
	genetic stock identification; otolith mark; Okhotsk Sea
	作成者: 浦和, 茂彦, 関, 二郎, 川名, 守彦, 斎藤, 寿彦,
	Crane, Penelope A., Seeb, Lisa W., 福若, 雅彰,
	Akinichev, Elena
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2001591

This work is licensed under a Creative Commons Attribution 4.0 International License.

Origins of Juvenile Chum Salmon caught in the Southwestern Okhotsk Sea during the Fall of 2000

Shigehiko Urawa*1, Jiro Seki*1, Morihiko Kawana*1, Toshihiko Saito*1, Penelope A. Crane*2, 3, Lisa W. Seeb*2, Masa-aki Fukuwaka*4, and Elena Akinicheva*5

*1 Research Division, National Salmon Resources Center, 2-2 Nakanoshima, Toyohira-ku, Sapporo 062-0922, Japan (urawa@affrc.go.jp)

* Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, AK 99518, USA * Present Address: U. S. Fish and Wildlife Service, 1011 E. Tundor Road, Anchorage, AK 99503, USA * Hokkaido National Fisheries Research Institute, Kushiro, Hokkaido 085-0802, Japan * MagadanNIRO, 51 Nagaevskaya St., Magadan 685024, Russia

Abstract.— Genetic stock identification (GSI) and thermal otolith marking techniques were used for determining the stock origin of juvenile chum salmon (*Oncorhynchus keta*) (age 0.0) caught in the southwestern Okhotsk Sea (48-51°N, 146-150°E) in October 2000. The GSI results using an Asian baseline indicated that the stock composition of juvenile chum salmon was 21% Japan, 22% Amur River, 25% Sakhalin, and 31% northern Russia (Magadan/Kamchatka) stocks. Seven otolith marked chum salmon (3.4%) were found among the samples. These marked fish were released from the Bereznykovsky Hatchery (n=6) in Sakhalin and the Ozerky Hatchery (n=1) in western Kamchatka. These results suggested that Russian stocks were dominant among juvenile chum salmon in the sampling area in the fall of 2000.

Key words: juvenile chum salmon, distribution, genetic stock identification, otolith mark, Okhotsk Sea

Introduction

Juvenile chum salmon (*Oncorhynchus keta*) are abundant in the Okhotsk Sea during the summer and fall (Ueno 1997; Melnikov et al. 1999a, 1999b; Lapko and Glebov 2001). A genetic stock identification (GSI) study suggested that Japanese stocks are dominant among juvenile chum salmon caught in the southern Okhotsk Sea in the fall of 1993 (Urawa et al. 1998, 2001), but other stock identifications have not been conducted for juvenile salmon in this water.

Thermal and dry markings of salmonid otoliths have been well developed as a remarkable tool to determine the hatchery origin of salmon. Now large numbers of otolith-marked salmon are annually released from hatcheries in Pacific rim countries. In the spring of 2000, approximately 14 million thermally-marked chum salmon fry were released

from 5 hatcheries in Japan, and 32 million chum fry with dry or thermal marking were released from 7 hatcheries in Russia (Table 3).

The present study was conducted to determine stock origin of juvenile chum salmon caught in the southwestern Okhotsk Sea in the fall of 2000 by using genetic and otolith marks.

Materials and Methods

Fish samples

Trawl surveys were conducted at 10 sampling stations in the southwestern Okhotsk Sea (45-51°N, 146-150°E) and one station (44°N, 150°E) in the North Pacific Ocean off the Kuril Islands by R/V *Torishima* during October 13-28, 2000 (Table 1, Fig. 1)(Saito et al. 2001). The size of the mid-water rope trawl was 87 m in net length and 41 m in headrope length. The trawl was towed for 60 min at average 3.5 knot. The captured juvenile chum salmon (age 0.0) were preserved in a deep freeze (-35°C) until analyses. In laboratory, the fork length, body weight and gonad weight of each fish were recorded, and scales were removed to confirm their age.

Contribution A No. 42 from the National Salmon Resources Center.

^{© 2006} National Salmon Resources Center

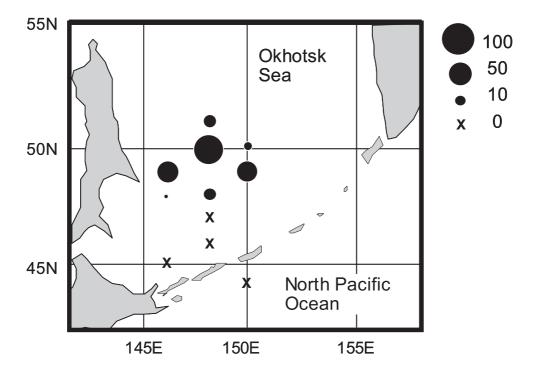


Fig. 1. CPUE distribution of juvenile chum salmon in the southern Okhotsk Sea in October 2000. CPUE means the number of fish caught by 1-h trawl at 3.5 knots.

Table 1. Sampling location, date and number of juvenile chum salmon (age 0.0) caught in the Okhotsk Sea in the fall of 2000.

	Sampling location			Number of	Number of otolith marked fish		
Station #	Latitude (N)	Longitude (E)	Date of sam- pling	fish samples	Bereznykovsky Hatchery	Ozerky Hatchery	
1	45°00′	146°02′	Oct. 13	0	0	0	
2	46°01′	148°00′	Oct. 14	0	0	0	
3	47°00′	148°00′	Oct. 14	0	0	0	
4	48°01′	147°59′	Oct. 16	15	0	0	
5	48°00′	146°02′	Oct. 16	2	0	0	
6	49°00′	146°03′	Oct. 21	43	0	0	
7	51°00′	148°01′	Oct. 23	15	1	0	
8	50°01′	148°00′	Oct. 24	82	2	1	
9	49°01′	150°01′	Oct. 25	41	3	0	
10	49°59′	150°02′	Oct. 25	8	0	0	
11	44°02′	150°01′	Oct. 28	0	0	0	

tal otoliths, muscle, heart, and liver were collected from each fish. The sagittal otoliths were dried and kept in cell well plates until the detection of otolith makers. The other tissues (muscle, heart, and liver) were immediately frozen in -80°C freezer for genetic analysis.

GSI analysis

Genetic samples were examined for protein electrophoretic variation on horizontal starch gels using standard procedures described by Aebersold et al. (1987). Alleles were compared and standardized for

20 polymorphic loci (Table 2). We used Asian baseline data set (43 stocks/20 loci) collected by Winans et al. (1994), Wilmot et al. (1998) and present study (Appendix). Estimates of stock contributions were made with a conditional maximum likelihood algorithm (Pella and Milner 1987) using the Statistics Program for Analyzing Mixtures (SPAM version 3.5, Debevec et al. 2000). Standard deviations and 90% confidence intervals were estimated by 1,000 bootstrap resamplings of the baseline and mixture samples. Estimates were made to individual stocks and than pooled to regional stock groups: Japan, Sak-

Table 2. Loci and alleles pooled for Asian baseline of chum salmon.

	Allele											
Locus	1	2	3	4	5	6	7	8	9			
sAAT-1,2*	100/113	120/125	65		84/80/95							
mAAT-1*	-100	-120/-110	-70									
mAH-3*	100/140/115	124										
ALAT*	100/98/fast	93/90	78									
ESTD*	100	91/80	110/106									
G3PDH-2*	100/132	90										
GPI-B1,2*	100	fast	40									
GPI-A*	100	slow	Fast									
mIDHP-1*	100	60	140	20	85							
sIDHP-2*	100/65	35	85	25	20	110	28		45			
LDH-A1*	100	50	110/0									
LDH-B2*	100/60	120/115										
sMDH-A1*	100	200	400	10								
sMDH-B1,2*	100/110	72/85/95	50/20	fast>110								
mMEP-2*	100/75	122										
sMEP-1*	100	90										
MPI*	100	94/91/95/97	110	80/86		74						
PEPA*	100	90	113									
PEPB-1*	-100	-146	-126	-127	-72/-50							
PGDH*	100	88/84	104/106/110	95								

Table 3. A list of otolith-marked chum salmon fry (1999 brood year) released from hatcheries in Japan and Russia during the spring of 2000. These data are available through the North Pacific Anadromous Fish Commission (NPAFC) Working Group on Salmon Marking website (http://npafc.taglab.org/).

ID#	Mark type*1	Date released	Country	State/ Province	Region released	Facility	Release site	Total # released	RBr code*2
J99-01		Mar. 16-Apr. 10	Japan	Hokkaido	Japan Sea coast	Chitose Hatchery	Chitose River	4,914,000	1:1.2,2.6n
J99-02	TM	May19-22	Japan	Hokkaido	West Pacific coast	Shizunai Hatchery	Shizunai River	311,000	1:1.2,2.3
J99-03	TM	Mar. 3-May 17	Japan	Hokkaido	West Pacific coast	Shizunai Hatchery	Shizunai River	3,113,000	1:1.2,2.3
J99-04	TM	May 10	Japan	Hokkaido	West Pacific coast	Shizunai Hatchery	Shizunai River	15,000	1:1.2,2.3+3.5
J99-05	TM	May 31-Jun. 3	Japan	Hokkaido	West Pacific coast	Shikiu Hatchery	Shikiu River	824,000	1:1.2,2.3n -3.3n
J99-06	TM	Apr. 20-May 31	Japan	Hokkaido	West Pacific coast	Shikiu Hatchery	Shikiu River	360,000	1:1.2,2.3n -3.5n
J99-07	TM	Apr. 20-May 31	Japan	Hokkaido	West Pacific coast	Shikiu Hatchery	Shikiu River	378,000	1:1.2,2.1n
J99-08	TM	May 1	Japan	Hokkaido	Nemuro Strait coast	Ichani Hatchery	Kunbetsu River	1,085,000	1:1.2,2.4n
J99-09	TM	Apr. 19-May 31	Japan	Hokkaido	Nemuro Strait coast	Ichani Hatchery	Ichani River	3,503,000	1:1.2,2.8n
R99-01	TM	unknown	Russia	Magadan	Tauy Bay	Arman Hatchery	Arman River	4,100,000	1:1.5n
R99-02	DM	unknown	Russia	Magadan	Tauy Bay	Yana Hatchery	Yana River	39,100	1:1.6
R99-04	DM	unknown	Russia	Magadan	Tauy Bay	Ola Hatchery	Ola River	302,000	1:1.5
R99-06	DM	unknown	Russia	Magadan	Tauy Bay	Ola Hatchery	Ola River	112,000	1:1.5n
R99-07	DM	unknown	Russia	Magadan	Tauy Bay	Ola Hatchery	Ola River	43,000	1:1.5n+2.17
R99-08	TM	unknown	Russia	Magadan	Tauy Bay	Ola Hatchery	Ola River	3,500,000	1:1.5
R99-09	TM	unknown	Russia	Magadan	Tauy Bay	Tauy Hatchery	Tauy River	740,000	1:1.5+2.2
R99-12	DM	unknown	Russia	Kamchatka	West Kamchatka	Ozerky Hatchery	Bolshaya River	422,000	1:1.3+2.2
R99-13	DM	unknown	Russia	Kamchatka	West Kamchatka	Ozerky Hatchery	Bolshaya River	95,000	1:1.3n
R99-15	DM	unknown	Russia	Kamchatka	East Kamchatka	Ketkino Hatchery	Avacha River	621,000	1:1.3+2.4
R99-18	TM	unknown	Russia	Sakhalin	Okhotsk Sea	Bereznykovsky Hatchery	Okhotsk Sea	22,546,100	1:1.4

^{*1}DM, dry mark; TM, thermal mark

halin, Premorye, Amur River, and northern Russia (Magadan/Kamchatka/Anadyre).

Detection of otolith marks

Otoliths were collected from 206 juvenile chum salmon. The left sagittal otoliths were mounted on slide glasses using thermoplastic cement, and then ground to expose the primordia. If the left sagittal

^{*2}RBr, Regional band rings showing coding structure of thermal marks (Munk and Geiger 1998)

Table 4. Contribution estimates of Asian stocks to juvenile chum salmon mixtures (n=191) caught in the Okhotsk Sea in the fall of 2000 using Asian baseline. Standard deviations (SD) and 90% confidence intervals (CI) are calculated from 1,000 bootstrap resamples and baseline.

Region	Estimate	SD	Lower CI	Upper CI
Japan	0.213	0.071	0.128	0.364
Amur River	0.219	0.054	0.111	0.289
Premorye	0.000	0.002	0.000	0.000
Sakhalin	0.253	0.084	0.087	0.356
Northern Russia	0.310	0.071	0.241	0.475

Table 5. Otolith marked chum salmon juveniles (age 0.0) caught in the Okhotsk Sea during the fall of 2000.

Sar	npling loc	ation	Sampling	Fork	Body	~	Gonad			Otolith marks
Station #	Latitude (N)	Longitude (E)		length (mm)	weight (g)	Sex	weight (g)	RBr*	ID#	Facility released
7	51°00′	148°01′	Oct. 23	207	202.0	Male	0.22	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin
8	50°01′	148°00′	Oct. 24	214	100.4	Male	0.26	1:1.3n	R99-13	Ozerky Hatchery, west Kamchatka
8	50°01′	148°00′	Oct. 24	230	131.4	Male	0.19	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin
8	50°01′	148°00′	Oct. 24	208	106.2	Female	0.99	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin
9	49°01′	150°01′	Oct. 25	217	110.6	Male	0.31	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin
9	49°01′	150°01′	Oct. 25	215	116.1	Female	1.25	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin
9	49°01′	150°01′	Oct. 25	215	111.9	Male	0.41	1:1.4	R99-18	Bereznykovsky Hatchery, Sakhalin

*RBr, Regional band rings showing coding structure of thermal marks (Munk and Geiger 1998)

otoliths were not available, the right sagittal otoliths were used. Otolith microstructures were observed under a light microscope, and the microstructure patterns were compared to the thermal mark patterns of voucher specimens collected from hatcheries before releases (Table 3).

Results

Distribution of juvenile chum salmon

Juvenile chum salmon (age 0.0, n=206) were captured in seven sampling stations of the southwestern Okhotsk Sea (48-51°N, 146-150°E), but not in the other four stations located south of 47°N (Fig. 1).

Genetic stock identification

The regional composition estimates of juvenile chum salmon (n=191) caught in the southwestern Okhotsk Sea were 21.3% Japan, 21.9% Amur River, 25.3% Sakhalin, and 31.0% northern Russia stocks (Table 4). The Premorye stock was absent in the mixture samples.

Otolith mark

Otolith marks were detected in seven juvenile chum salmon (3.4%) caught in the southwestern water (49-51°N, 148-150°E) on October 23-25 (Table 1). These marked fish originated from the Bereznyk-

ovsky Hatchery (n=6) in southern Sakhalin and the Ozerky Hatchery (n=1) in western Kamchatka. The fork length of the marked fish was in the range of 207-230 mm (Table 5).

Discussion

Urawa et al. (2001) estimated contributions of Asian stocks to a mixture of juvenile chum salmon caught in the Okhotsk Sea during October 1993. In the southern Okhotsk Sea, juvenile chum salmon were composed of 79% Japanese, 11% Amur, and 4% northern Russian stocks. Sakhalin and Premorye stocks were almost absent in the mixture. However, the present study suggested that Russian stocks including Sakhalin origin were dominant among juvenile chum salmon caught in the southwestern Okhotsk Sea during October 2000. The following survey conducted in the wide areas of the Okhotsk Sea during the fall of 2002 indicated that the stock composition of juvenile chum salmon was different among sampling stations (Urawa, unpublished information). This 2002 GSI results indicated that Russian stocks were dominant in the southwestern Okhotsk Sea, while Japanese stock was dominant in the southeastern waters.

This may be the first recovery record of Russian otolith marks from offshore of the Okhotsk Sea. Especially it is noteworthy that six marked fish were

the Bereznykovsky Hatchery origin in Sakhalin. This hatchery released approximately 22 million thermal marked chum salmon fry in the spring of 2000 (Table 3). On the other hand, we found one dry marked fish released from the Ozerky Hatchery along the Bolshaya River in western Kamchatka, although only 95,000 chum salmon fry with the same mark (RBr 1:1.3n) were released from this hatchery.

In the spring of 2000, a total of 14 million thermally-marked chum salmon fry were released from the Chitose (Japan Sea coast), Shizunai and Shikiu (Pacific coast), Kunbetsu and Ichani hatcheries (Nemuro coast) in Hokkaido. However, Japanese marked fish were not detected among the present juvenile chum samples. The GSI analysis also suggested a low contribution of Japanese stocks. The low contribution of Japanese stock in juvenile chum salmon may be due to the sampling locations limited in the western waters.

Urawa et al. (2001) estimates that Japanese chum salmon juveniles stay in the Okhotsk Sea from summer until late autumn, overwinter in the western North Pacific Ocean, and then migrate into the Bering Sea by the following summer. We should continue the monitoring program for juvenile salmon in the Okhotsk Sea using stock identification and abundance estimate techniques to clarify the survival mechanisms of Asian chum salmon during the early ocean life.

Acknowledgements

We are grateful to the crew of the R/V *Torishima* for their cooperation to collect salmon samples.

References

- Aebersold, P. B., G. A. Winans, D. J. Teel, G. B. Milner, and F. M. Utter. 1987. Manual for starch gel electrophoresis: a method for the detection of genetic variation. U.S. Dept. Commer., NOAA Tech. Rep., 61. 19 p.
- Debevec, E. M., R. B. Gates, M. Masuda, J. Pella, J. Reynolds, and L. W. Seeb. 2000. SPAM (version 3.2): statistics program for analyzing mixtures. J. Heredity, 91: 509-511.
- Lapko, V. V., and I. I. Glebov. 2001. Distribution and abundance of Pacific salmon in the southern
 Okhotsk Sea in summer-fall 2000. (NPAFC Doc. 522) 14 p. Pacific Scientific Research Fish-

- eries Center (TINRO-center), Vladivostok, Russia. Melnikov, I. V., V. I. Radchenko, and A. N. Starovoitov. 1999a. Pacific salmon distribution in the southern Okhotsk Sea during autumn of 1998 and pink salmon catch forecast for 1999 fishery season. (NPAFC Doc. 433) 10 p. Pacific Scientific Research Fisheries Center (TINRO-center), Vladivostok, Russia.
- Melnikov, I. V., A. N. Starovoitov, E. N. Ilyinsky, and I. I. Glebov. 1999b. Interannual variability of Pacific salmon distribution in the southern Okhotsk Sea during summer of 1998 and 1999. (NPAFC Doc. 432) 12 p. Pacific Scientific Research Fisheries Center (TINRO-center), Vladivostok, Russia.
- Munk, K. M., and H. J. Geiger. 1998. Thermal marking of otoliths: the "RBr" coding structure of thermal marks. (NPAFC Doc. 367) 19 p. Alaska Department of Fish and Game, CWT and Otolith Processing Laboratory, Box 25526, Juneau, AK 99802, USA.
- Pella, J. J., and G. B. Milner. 1987. Use of genetic marks in stock composition analysis. In Population genetics and fishery management (edited by N. Ryman and F. Utter). University of Washington Press, Seattle, WA. pp. 247-276.
- Saito, T., J. Seki, T. Kinoshita, M. Fukuwaka, S. V. Davydova, and N. B. Bessmertnaya. 2001. Distribution and biological characteristics of juvenile salmon in the Sea of Okhotsk in the autumn of 2000. (NPAFC Doc. 538) 13 p. National Salmon Resources Center, Toyohira-ku, Sapporo 062-0922, Japan.
- Seeb, L. W., P. A. Crane, and R. B. Gates. 1995. Progress report of genetic studies of Pacific rim chum salmon and preliminary analysis of the 1993 and 1994 south Unimak June fisheries. Regional Information Report No. 5J95-07, Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, AK, USA.
- Ueno, Y. 1997. Distribution, migration, and abundance estimation of Asian juvenile salmon. (NPAFC doc. 270). 17 p. National Research Institute of Far Seas Fisheries, 7-1 Orido 5-chome, Shimizu, Shizuoka 424, Japan.
- Urawa, S., Y. Ueno, Y. Ishida, L. W. Seeb, P. A. Crane, S. Abe, and N. D. Davis. 2001. A migration model of Japanese chum salmon during early ocean life. NPAFC Tech. Rep., 2: 1-2.

Urawa, S., Y. Ueno, Y. Ishida, S. Takagi, G. Winans, and N. Davis. 1998. Genetic stock identification of young chum salmon in the North Pacific Ocean and adjacent seas. (NPAFC Doc. 336) 9
p. National Salmon Resources Center, Fisheries Agency of Japan, Toyohira-ku, Sapporo 062-0922, Japan.

Wilmot, R. L., C. M. Kondzela, C. M. Guthrie, and M. S. Masuda. 1998. Genetic stock identification of chum salmon harvested incidentally in the 1994 and 1995 Bering Sea trawl fishery. N. Pac. Anadr. Fish Comm. Bull., 1: 285-299.

Winans, G. A., P. B. Aebersold, S. Urawa, and N. V. Varnavskaya. 1994. Determining continent of origin of chum salmon (*Oncorhynchus kata*) using genetic stock identification techniques: status of allozyme baseline in Asia. Can. J. Fish. Aquat. Sci., 51 (Suppl. 1): 95-113.

2000年秋にオホーツク海南西部で採集されたサケ 幼魚の起源

浦和茂彦・関 二郎・川名守彦・斎藤寿彦・ Penelope. A. Crane・Lisa. W. Seeb・福若雅彰・ Elina Akinicheva

2000年10月にオホーツク海南西部で調査船とりしまにより採集されたサケ幼魚206個体の地理的起源を遺伝的系群識別法と耳石標識により推定した.アロザイム多型による遺伝的系群識別で推定された系群組成は,日本系21%,アムール系22%,サハリン系25%,北ロシア系31%であった.7個体(3.4%)より耳石標識が検出されたが,これらはサハリンのBereznykovsky Hatchery (n=6)と西カムチャツカのOzerky Hatchery (n=1)より放流された幼魚であった.以上の結果は,2000年秋にオホーツク海南西部に分布したサケ幼魚はロシア系が大部分を占めていたことを示唆する.

Appendix. List of populations for Asian chum salmon baseline.

	Population	Date of collection	Number of samples	Source
APAN	Coast of Honshu			
Pacific	Kido River	Nov. 7, 1994	80	Present study
	Koizumi River	Nov. 21, 1996	80	Present study
	Naruse River	Nov. 1995	80	•
				Present study
	Ohkawa River	Dec. 6, 1989	100	Winans et al. 1994
	Katagishi River	Nov. 22, 1995	79	Present study
	Hei River	Oct. 25, 1996	45	Present study
	Tsugaruishi River	Dec. 7, 1989	100	Winans et al. 1994
	Orikasa River	Oct 24, 1996	80	Present study
Japan S	Sea Coast of Honshu	27 0 4004	40	
	Tedori River	Nov. 8, 1994	40	Present study
	Sho River	Nov. 14, 1994	80	Present study
	Kurobe River	Oct. 31, 1996	80	Present study
	Miomote River	Nov. 6, 1989	100	Winans et al. 1994
	Uono River	Oct. 18, 1995	80	Present study
	Gakko River	Dec. 8, 1994	40	Present study
	Gakko River	Dec. 3, 1997	40	Present study
	Gakko River	Nov. 8, 1989	39	Winans et al. 1994
Pacific	Coast of Hokkaido			
	Yurrapu River Early	Sep. 24, 1997	80	Present study
	Yurrapu River Mid	Oct. 15, 1997	80	Present study
	Yurrapu River Late	Nov. 17, 1997	80	Present study
	Shikiu River	Oct. 1991	80	Present study
	Shizunai River	Oct. 1991	80	Present study
	Tokachi River	Sep. 27, 1990	80	Winans et al. 1994
	Kushiro River	Oct. 19, 1989	100	Winans et al. 1994
Nemuro	Coast	ŕ		
	Nishibetsu River	Oct. 17, 1989	100	Winans et al. 1994
Okhotsk	Sea Coast	,		
	Abashiri River	Oct. 19, 1998	80	Present study
	Tokushibetsu River	Oct. 17, 1987	42	Winans et al. 1994
	Yubetsu River	Nov. 1992	40	Present study
	Shari River	Oct. 18, 1989	100	Winans et al. 1994
Janan S	ea Coast of Hokkaido	30. 10, 1505	100	Williams of all 1999
Japan 5	Chitose River	Oct. 16, 1989, 1990	180	Winans et al. 1994
	Teshio River	Oct. 15, 1987	97	Winans et al. 1994
	Teshio Kivei	Oct. 13, 1967	91	willans et al. 1994
RUSSIA				
Amur I				
_	Amur River	1997	150	Wilmot et al. 1998
Premor	-			
	Ryzanovka River	1994	51	Wilmot et al. 1998
	Avakumovka	1994	35	Wilmot et al. 1998
	Narva	1994	18	Wilmot et al. 1998
Sakhali	n Island			
	Kalininka River	1994	49	Wilmot et al. 1998
	Naiba River	1994, 1995	100	Wilmot et al. 1998
	Udarnitsa	1994	98	Wilmot et al. 1998
Anadyr	River			
	Anadyr River	1991	104	Winans et al. 1994
Eastern	Kamchatka			
	Nerpichi Lake	July 19, 1991	40	Winans et al. 1994
	-	Aug. 23, 1990; Aug. 2,		
	Kamchatka River	1100. 20, 1770, 1106. 2,	120	Winans et al. 1994

Appendix. (continued).

Population	Date of collection	Number of samples	Source	
Western Kamchatka				
Utka River	1991	79	Winans et al. 1994	
Kikchik River	1991	40	Winans et al. 1994	
Pymta River	July 29, 1990; 1991	159	Winans et al. 1994	
Kol River	July 30, 1990	93	Winans et al. 1994	
Hairusova River	July 3, 1990	154	Winans et al. 1994	
Sea of Ohkotsk				
Tumani River	July 15, 1991	66	Winans et al. 1994	
Ola River	Aug. 3, 1990; July 15, 1991	160	Winans et al. 1994	