

ミズクラゲ餌料としての微小動物プランクトン:現 場海水中でのポリプ期の増殖と捕食応答

メタデータ	言語: English
	出版者:
	公開日: 2024-04-12
	キーワード (Ja):
	キーワード (En): asexual reproduction; Aurelia; feeding
	selectivity; ingestion; jellyfish
	作成者: 神山, 孝史
	メールアドレス:
	所属: 水産研究・教育機構
URL	https://fra.repo.nii.ac.jp/records/2002133

1	Microzooplankton as a food source for the scyphozoan Aurelia coerulea: growth and feeding
2	responses of the polyp stage in field assemblages
3	
4	Takashi Kamiyama ^{†,} *
5	
6	Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8,
7	Taira, Nagasaki City, Nagasaki 220-6115, Japan
8	† Present address: Japan Fisheries Research and Education Agency, 6F Technowave 100,
9	Shin-urashima 1-1-25, Kanagawa, Yokohama, Kanagawa 221-8529, Japan
10	
11	*Corresponding author: Takashi Kamiyama; Email, <u>kamiyama@affrc.go.jp</u>
12	
13	
14	Running head: Growth of Aurelia polyps in field seawater
15	

16 Abstract

17 To evaluate the growth and feeding responses of the polyp stage of the moon jellyfish Aurelia 18 coerulea to natural microzooplankton assemblages, bud production among A. coerulea polyps 19 was monitored in field bottle incubation experiments using fractionated field seawater (<200-20 µm fraction) in summer. During this incubation period, feeding rates were measured twice by 21 examining changes in the abundance of various microzooplankton taxa over two days. The 22 number of buds increased with incubation period, reaching a mean of 5.8–9.3 buds per polyp 23 after 16 days, at which point the carbon content of the new buds and the mother polyp was 24 estimated to be 1.3–2.5 times higher than the carbon content of the initial polyp. Using these carbon content estimates, I calculated specific growth rates of $0.1-0.2 \text{ d}^{-1}$ during the first 10 25 26 days. The results of the present feeding experiments suggest that polyps utilize diverse groups of microzooplankton and achieve relatively high carbon ingestion rates from ciliates, 27 28 dinoflagellates, molluscs, and copepod nauplii. Total microzooplankton ingestion rates were estimated to be 4.05 and 3.27 μ gC polyp⁻¹ d⁻¹ in the two experiments, respectively. These 29 30 findings show that natural microzooplankton assemblages play a role as prey of polyps and can promote asexual reproduction of polyps under natural summer conditions. 31 32 Keywords: asexual reproduction; Aurelia; feeding selectivity; ingestion; jellyfish

2	Λ
5	-

Introduction

36	The scyphomedusan jellyfish Aurelia coerulea von Lendenfeld, 1884 is a common species
37	in temperate waters in the northwestern Pacific, Australia, west coast of the USA,
38	Mediterranean and Atlantic coast of Europe (Lawley et al. 2021). Dense aggregations of this
39	species have hampered commercial fishing by clogging and bursting trawl nets (Yasuda 1988,
40	Uye & Ueta 2004) and have caused problems for coastal power plants by blocking cooling
41	water intake pipes (Rajagopal et al. 1989). In addition, an increase in jellyfish biomass may
42	reduce fish standing stocks and hurt commercial fisheries because most jellyfish compete with
43	planktivorous fish for food resources (e.g., copepods) and are potential predators of fish eggs
44	and larvae (Möller 1980, 1984, Schneider & Behrends 1994, Olesen 1995, Purcell 1997). In
45	view of these negative effects, it is imperative to understand the mechanisms underlying
46	increases in jellyfish biomass and the occurrence of blooms.
47	To clarify these mechanisms, it is essential to improve our understanding of the polyp and
48	ephyra stages of the jellyfish lifecycle. The polyp stage is the only stage that can generate
49	additional polyps by asexual budding and release numerous planktonic ephyrae through
50	strobilation. So far, several studies of scyphozoan polyps have described potential growth
51	activity during this stage and elucidated the effects of temperature and food availability

52	(Purcell et al. 1999, Ishii & Watanabe 2003, Liu et al. 2009, Han & Uye 2010, Kamiyama
53	2013). However, the growth response of the polyp stage to natural planktonic assemblages
54	remains poorly understood.
55	Microzooplankton are a numerically important component of marine zooplankton
56	communities worldwide (e.g., Pierce & Turner 1992). Although there is some information on
57	the availability of microzooplankton as a food source for scyphozoan jellyfish, quantitative
58	data for the polyp stages are more limited (Kamiyama 2011, 2013). Because polyps are
59	considerably smaller than medusae, it is logical to expect them to feed more efficiently on
60	microzooplankton. Furthermore, because polyps are sessile, they may have fewer
61	opportunities to encounter less abundant prey items. Hence, microzooplankton, which occur
62	at 1–2 orders of magnitude higher abundance than meso- and macrozooplankton (e.g., Uye et
63	al. 1996, Uye & Shimazu 1997), may be an essential prey source during this stage.
64	Laboratory culture experiments have shown that A. coerulea polyps can feed on ciliates,
65	the main component of microzooplankton, and can assimilate their food energy to efficiently
66	produce buds (Kamiyama 2011, 2013). However, the quantitative effects of microzooplankton
67	on A. coerulea polyps under field conditions remain to be clarified.
68	Here, I examined the growth response of polyps of A. coerulea in natural
69	microzooplankton assemblages in field experiments. In addition, two field-bottle-experiments

70	were conducted during the polyp growth experiment to investigate taxon-specific feeding
71	rates in natural seawater. Based on the results of these experiments, the role of
72	microzooplankton on polyp growth under field conditions was evaluated. The present study is
73	the first to examine growth and feeding responses of polyps to a variety of microzooplankton
74	taxa in field seawater.
75	
76	Materials and Methods
77	
78	Aurelia coerulea polyps
79	
80	Three individuals of brooding A. coerulea medusae were captured by scooping with a
81	hand net in Hiroshima Bay in summer, 2008 and brought to the laboratory. They were reared
82	in a 100-1 Artemia hatchery tank at ca. 20 °C by providing Artemia nauplii as prey. Then,
83	planulae naturally discharged from the medusae metamorphosed to polyps, and then adhered
84	to the bottom and side of the tank. Some of them were selected to establish a stock culture of
85	A. coerulea polyps. The stock polyps were maintained in plastic cups containing filtered
86	seawater at 20–25 °C under irradiances of 30–100 μmol photons $m^{-2}~s^{-1}$ with a 12 h:12 h

87	light-dark photocycle and were fed in excess with newly hatched nauplii of Artemia sp. two
88	to three times a week.

90 Preparation and experimental design for field growth experiment

92	For the field growth experiment, A. coerulea polyps with similar body size were randomly
93	selected from a stock culture, and then inoculated one by one into each well of 4-well plates,
94	which were produced by cutting 24-well multi-well plates (Fig. 1A), and were incubated in
95	filtered seawater without supply of prey at 25 °C in the dark for one week to facilitate
96	settlement of the polyps on the bottom of each well. Then, the end of a nylon line (ca. 10 cm)
97	was connected to the corner of each plate, and a small float was attached to the opposite side
98	of the line to suspend each plate in an incubation bottle (Fig. 1A, B). This system allowed
99	plates to move and helped polyps to encounter prey in the bottles. Seawater for the
100	experiments was collected one day before the experiment with a Van-Dorn water sampler
101	from a depth of 2 m at the study site for the following experiments and was passed through
102	glass microfiber filters (Whatman GF/C, pore size 1.2 μ m). The filtrate was used to fill two
103	1,000-mL polycarbonate bottles, and the prepared plates were placed in the bottles. Then, the
104	bottles were suspended at 2-m depth at the study site for one day to acclimate the polyps to

105	natural environmental conditions. Since some polyps did not adhere to the wells on the plates
106	in the settlement process or peeled from the plates and dropped in the bottle in the acclimation
107	process, it was impossible to prepare the plates with 4 polyps attached for all treatments.
108	Hence, plates with 3 polyps attached were also used for the following experiments.
109	The field growth experiment was conducted at the study site (34°16'31"N, 132°16'1"E, the
110	port for research ships in Hatsukaichi field station of the Japan Fisheries Research and
111	Education Agency) located in western Hiroshima Bay, the Seto Inland Sea of Japan. The
112	experiment began on 23 August 2011 and lasted 16 days. Seawater collected with a Van-Dorn
113	water sampler at the site at a depth of 2 m (ca. 12 L) was passed through a 200- μ m plankton
114	net (hereafter "the <200 -µm fraction"). Temperature and salinity were monitored using a
115	conductivity-temperature-depth (CTD) meter (ASTD687; JEF-Advantec), and the
116	chlorophyll-a concentration on a Whatman GF/F filter was measured with a fluorometer
117	(10Au; Turner Designs) using the N,N-dimethylformamide extraction method on 120- or 124-
118	mL seawater samples. Before setting up each growth experiment, a 200-mL seawater sample
119	(the <200- μ m fraction) was fixed with Lugol's iodine solution (final concentration: 5%) and
120	stored at ca. 5 °C in the dark to monitor microzooplankton biomass and community
121	composition.

122	A portion of the seawater (ca. 4 L) was filtered through Whatman GF/C filters (hereafter
123	"the GF/C filtrate fraction"). The <200 -µm fraction was used to fill four 1,000-mL
124	polycarbonate bottles for the experimental treatment, and the GF/C filtrate fraction was used
125	to fill three bottles for the no-prey control treatment. In both cases, each bottle was filled to
126	the brim (seawater volume: 1,090 mL). Then, a plate with 4 polyps was set in each
127	experimental bottle, and with 3 polyps was put in the control bottle. All the bottles were then
128	suspended at a depth of 2 m from a float on the sea surface, being tied to a stainless-steel ring
129	with a rope, which was intended to facilitate the movement of seawater inside the bottles (Fig.
130	1C). Two days later, all bottles were retrieved, and the plates were taken out. Filtered
131	seawater was then poured into all wells of a given plate, and all polyps were photographed
132	using a stereomicroscope (SZX9, Olympus) and a digital camera (Camedia SP 350,
133	Olympus), as described below. Subsequently, the experimental and control bottles were filled
134	again with freshly collected seawater (< 200 μ m fraction and GF/C filtrate fraction,
135	respectively) and the polyp plates were re-deployed into them. This procedure was repeated
136	every other day for 16 days. Unfortunately, 2 out of 3 control treatment bottles were lost to
137	waves during the field incubation period (day 4 and 10). Hence, one remaining bottle
138	containing 3 polyps was used to evaluate the no-prey control treatment.

Polyp growth analysis

142	Before plated polyps were placed in each bottle, I took photographs of the original polyps
143	and of any new child polyps (buds) produced from the stalk or pedal stolon in filtered
144	seawater, and then the number of buds produced by the original polyps and their calyx
145	diameters were examined on the digital images using Scion image software (Scion Corp.) and
146	Image J software (NIH, USA; http://rsbweb.nih.gov/ij/). Carbon contents of polyps and buds
147	(PC; μ gC ind ⁻¹) were estimated using the following calyx diameter–dry weight equation for <i>A</i> .
148	coerulea polyps (Kamiyama 2013) and a carbon–dry weight conversion factor of 0.233 μ gC
149	μg ⁻¹ (Kamiyama 2011):
150	$PC = 0.233 \times e^{(1.81 \times \ln(CD) - 8.06)} $ (1)
151	where CD (μm) is calyx diameter. Here, it was assumed that the equation and conversion
152	factor were also applicable to buds produced from a polyp.
153	To evaluate the growth of polyps, bud production rates and carbon growth rates were
154	calculated from the slopes of linear regressions of cumulative bud number per polyp versus
155	incubation period and of summed carbon contents of polyp and buds versus incubation time
156	during the first certain period, respectively.

158 Experimental design for field feeding experiments

160	To elucidate feeding responses of the polyps to microzooplankton assemblages, the
161	following experiment was performed twice (27 August and 6 September 2011) during the
162	field growth experiment. Three additional bottles without polyps were prepared using the
163	$<200-\mu m$ seawater fraction as a no-polyp control treatment. These were suspended at a depth
164	of 2 m at the study site and incubated for 2 days in accordance with the procedures used in the
165	field growth experiment. At the start of the experiments, three 200-mL seawater samples (the
166	<200-µm fraction) were fixed with Lugol's iodine solution (final concentration: 5%) to
167	determine the initial microzooplankton density and biomass. Following a 2-day incubation,
168	the same volume of seawater was collected from each bottle in the no-polyp control and
169	experimental treatments to determine the final microzooplankton abundance and biomass.
170	Changes in the abundance and biomass of each microzooplankton taxon over the 2-day
171	incubation were examined to estimate feeding parameters.
172	
173	Microzooplankton analysis

175	Preserved microzooplankton samples in the 200-mL field seawater (which was collected
176	every other day and at the start and end of the feeding experiments) were concentrated into a
177	1-mL volume using the settling method, and then were observed under a phase-contrast
178	microscope at $150 \times$ magnification using a Sedgewick Rafter counting chamber. The
179	coefficient of variation (the ratio of the standard deviation to the mean) of total
180	microzooplankton abundances in five subsamples of seawater collected in the field growth
181	experiment was 10% at 4.76 x 10^3 inds L ⁻¹ of the mean abundance. In this study, zooplankton
182	in the <200-µm seawater fraction, including plastidic and aplastidic dinoflagellates, were
183	defined as microzooplankton. These organisms were identified to the species, genus, or other
184	taxonomic level, and these groupings were used for the taxon counts. Aloricate ciliates and
185	dinoflagellates (including thecate and athecate) were categorized into three size groups based
186	on cell length viz. 15-30 μm (<30 μm), 30-50 μm and >50 μm for the former and 20-50 μm
187	(<50 μ m) and ≥50 μ m for the latter. For each group, the cell/body dimensions of up to 10
188	individuals were measured using a calibrated ocular micrometer in all timeseries samples in
189	the field growth experiment and all samples in each field feeding experiment. Mean cell
190	volume was calculated from cell length and width assuming appropriate geometric shapes for
191	ciliates, dinoflagellates, and other protists. Carbon contents were calculated using volume-to-
192	carbon conversion factors (Putt & Stoecker 1989, Menden-Deuer & Lessard 2000). Metazoan

193	body weights were estimated from overall body length or the length of specific body parts
194	using length-to-dry weight conversion factors for each taxon (Hirota 1986) and converted into
195	carbon content using suitable weight-to-carbon conversion factors/equations for each group
196	(Hirota 1986, Fisheries Agency 1989). For copepod nauplii and Oikopleura spp., carbon
197	content was directly estimated from the length of specific body parts using the appropriate
198	length-to-carbon conversion equations for each taxonomic group (Uye et al. 1996, Sato et al.
199	2001). Abundance and biomass were estimated for eight microzooplankton groups: ciliates,
200	dinoflagellates, molluscs, rotifers, copepods, copepod nauplii, Oikopleura spp., and others.
201	
202	Feeding rate calculation
203	
204	Feeding rates of <i>A</i> . <i>coerulea</i> polyps were estimated from the change in abundance of each
205	taxon during the incubation period in the experimental treatment, and values were corrected
206	based on abundance changes observed in the control treatment. Assuming an exponential
207	decline in taxon abundance, the clearance rate (CR_t , L bottle ⁻¹ d ⁻¹) was calculated according
208	to Frost (1972):

209
$$CR_t = \left(\frac{\ln Z_0 - \ln Z_t}{t} + k_t\right) \times V$$
(2)

where t(d) is the sampling duration; Z_0 and Z_t (individuals L^{-1}) are the mean abundance of 210 211 each taxon in the experimental treatment at time 0 and time t, respectively; and V(L) is the volume of seawater in the bottle. Finally, $k_t (d^{-1})$ is the growth or mortality rate in the control 212 213 treatment during time *t*, calculated from the following equation: $\mathbf{k}_t = \frac{lnCZ_t - lnCZ_0}{t}$ 214 (3) where CZ_0 and CZ_t (individuals L^{-1}) are the mean abundance at time 0 and time t, 215 216 respectively, of each taxon in the control treatment. The sampling period (2 days) was less than the generation time of all metazoans except rotifers. Hence, if k_t was non-negative, k_t was 217 218 assumed to be 0. 219 The CR_t was contributed by initial mother polyps (4 polyps) and buds produced by them. 220 To estimate clearance rate per individual polyp (standardized clearance rate), the number of polyps in the bottle (N_{std} ; polyps bottle⁻¹) was standardized with the following equations based 221 222 on the ratio of carbon contents of them to the initial polyp carbon: $N_{std} = \frac{PC_d}{PC_0}$ 223 (4)where PC_d (µgC bottle⁻¹) is the total carbon content of polyps and buds in the bottle at the 224 start of each feeding experiment (day 4 and day 14), and PC_0 (µgC ind⁻¹) is the mean carbon 225 226 content of a polyp at the start of the filed growth experiment (day 0), which were calculated

227 from calyx diameter and the Eq (1).

Hence, standardized clearance rate per polyp (CR_{t-std} , L polyp⁻¹ d⁻¹) was estimated from

229 Eq (2) and Eq (4):

230
$$CR_{t-std} = \frac{CR_t}{N_{std}}$$
(5)

Carbon-based ingestion rates (I_c , $\mu g C$ polyp⁻¹ d⁻¹) for each taxon were calculated based 231 232 on the standardized clearance rate (CR_{t-std}) and geometric mean of carbon biomass (C_{avg} , µg C L^{-1}) of each taxon during the incubation period (Heinbokel 1978): 233 234 $I_c = CR_{t-std} \times C_{ava}$ (6) where $C_{avg} = \frac{C_t - C_0}{\ln C_t - \ln C_0}$, and C_0 (µg C L⁻¹) and C_t (µg C L⁻¹) are the biomass of a given 235 236 taxon at time 0 and time t (= 2 days), respectively. The student *t*-test (p < 0.05) was used to evaluate whether the means of the abundance of 237 238 each taxon in each experimental treatment was significantly different from the value in the control treatment at the end of each feeding experiment. One sample *t*-tests (p < 0.05) were 239

used to evaluate whether the means of CR_{t-std} and I_c were significantly different from zero.

241

- 242 **Prey selectivity**
- 243

244	Ivlev's electivity index (Ivlev 1961) was used to evaluate feeding selectivity for each
245	microzooplankton taxon and each category of protists (ciliates and dinoflagellates) in the two
246	feeding experiments. Ivlev's index (E) is defined as
247	$E_i = \frac{r_i - p_i}{r_i + p_i} \tag{7}$
248	where r_i is the individual-based proportion of prey type <i>i</i> ingested by polyps, and p_i is the
249	individual-based proportion of prey type i in the environment. E can range from -1.0 to $+1.0$,
250	with positive values indicating a preference for a prey item and negative values indicating
251	avoidance. An E of 0 indicates that the ingestion rate is in proportion to availability (i.e., no
252	selection). One sample <i>t</i> -tests ($p < 0.05$) were used to evaluate whether per-bottle means were
253	significantly different from zero.
254	
255	Results
256	
257	Environmental conditions, microzooplankton abundance, and biomass in the field
258	growth experiment
259	
260	The temperature of seawater samples collected during the field growth experiment ranged
261	from 25.3 to 27.0 °C, and salinities ranged from 28.2 to 30.9 (no data were collected on 23

262	August and 25 August) (Fig. 2A). Chlorophyll- <i>a</i> concentrations fell within the range of 3.5–
263	27.9 µg L^{-1} (no data were collected on 23 August). Relatively low chlorophyll- <i>a</i>
264	concentrations (<5.3 μ g L ⁻¹) were observed from 2 September to 4 September (days 10–14).
265	Microzooplankton abundance was extremely high (346.2 $\times 10^3$ inds L ⁻¹) on 23 August
266	(day 0), and then ranged from 3.39×10^3 to 17.2×10^3 inds L ⁻¹ during the field growth
267	experiments (Fig. 2B). Dinoflagellates were the most abundant taxa throughout the
268	experimental period, except on 6 September when the abundance of ciliates was comparable
269	to that of dinoflagellates. Microzooplankton biomass varied greatly during the experiments
270	and ranged from 12.8 to 553.2 μ gC L ⁻¹ (Fig.2C). The biomass of dinoflagellates was also
271	large until 27 August, and that of ciliates, molluscs, and/or copepod nauplii was comparable
272	to dinoflagellates.
273	Abundance of ciliates ranged from 0.64×10^3 to 2.39×10^3 inds L ⁻¹ , dominated by the
274	smallest size group of aloricate ciliates and tintinnid ciliates (Fig. 3A, B). Biomass of ciliates
275	ranged from 2.3 to 17.6 μ gC L ⁻¹ , more than 50% of which was constituted by the largest size
276	group of aloricate ciliates and tintinnid ciliates (Fig, 3C, D). Abundance and biomass of
277	dinoflagellates exhibited extremely high values on the first day of the growth experiment
278	$(344.66 \times 10^3 \text{ inds } L^{-1} \text{ and } 510 \ \mu\text{gC} \ L^{-1}$, respectively), 95 % and 89% of which were
279	constituted by the small thecate group, respectively (Fig. 4). Those values were maintained at

280	more than 13.00 \times 10 3 inds L $^{-1}$ and 36 μgC L $^{-1}$ until August 27, and then ranged from 2.10 \times
281	10^3 to 3.09×10^3 inds L ⁻¹ and from 3.3 to 10.9 µgC L ⁻¹ , respectively. After the first day of
282	incubation, dinoflagellates were numerically dominated by small thecate and athecate types,
283	while interms of biomass they were dominated by small thecate and large athecate types
284	throughout the whole incubation period.
285	
286	Growth responses of polyps in field seawater
287	
288	The number of buds produced per polyp in the experimental treatment significantly
289	increased with incubation period until days $12-14$ ($p < 0.05$, <i>t</i> -test for the slope) and then
290	reached a plateau at 5.5–9.3 buds polyp ⁻¹ (Fig. 5A). Podocysts were not observed during the
291	field incubation period. Bud production rates calculated from data during the first 12 days by
292	fitting to the linear regression model ranged from 0.48 to 0.83 buds $polyp^{-1} d^{-1}$ (mean ± SE:
293	0.65 ± 0.09 buds polyp ⁻¹ d ⁻¹). Cumulative buds per polyp in the no-prey control treatment
294	also increased until 29 August (day 6) before leveling off at 3.3 buds $polyp^{-1}$.
295	At the start of incubation, carbon contents for a single polyp in the experimental treatment
296	ranged from 35.4 to 40.9 μ gC polyp ⁻¹ (mean±SE: 37.0 ± 2.5 μ gC polyp ⁻¹ , n=16), which was
297	almost the same as the value in the control treatment (38.3 \pm 9.1 µgC polyp ⁻¹ , n=3). Then, the

298	carbon biomass of the original polyps and their buds significantly increased with incubation
299	period until days 8–12 ($p < 0.05$, <i>t</i> -test for the slope) (Fig. 5B), and the carbon growth rate
300	during the first 10 days by fitting to the linear regression model ranged from 3.5 to 6.7 μgC
301	d^{-1} (mean \pm SE: 4.92 \pm 0.82 $\mu gC~d^{-1}$). This translates to a specific growth rate for the polyps
302	of 0.1–0.2 d ⁻¹ (mean ± SE: 0.14 ± 0.02 d ⁻¹). Subsequently, the carbon biomass reached a
303	plateau at a value 1.7–3.0 times higher than the initial carbon content, and the carbon growth
304	rate after day 10 was not significant ($p > 0.05$, t-test for the slope). Total carbon content in the
305	control treatment did not increase significantly during the incubation period ($p > 0.05$, t-test
306	for the slope).
307	
307 308	Calyx diameter of polyps and buds
307308309	Calyx diameter of polyps and buds
307308309310	Calyx diameter of polyps and buds The initial mean calyx diameter of polyps in each bottle ranged from 1,370 μm to 1,525
 307 308 309 310 311 	Calyx diameter of polyps and buds The initial mean calyx diameter of polyps in each bottle ranged from 1,370 μm to 1,525 μm, and then was stable until day 6 in the field growth experiments (Fig. 6A). After that day,
 307 308 309 310 311 312 	Calyx diameter of polyps and buds The initial mean calyx diameter of polyps in each bottle ranged from 1,370 μm to 1,525 μm, and then was stable until day 6 in the field growth experiments (Fig. 6A). After that day, the mean calyx diameter slightly decreased and ranged from 1,110 μm to 1,199 μm at the end
 307 308 309 310 311 312 313 	Calyx diameter of polyps and buds The initial mean calyx diameter of polyps in each bottle ranged from 1,370 μm to 1,525 μm, and then was stable until day 6 in the field growth experiments (Fig. 6A). After that day, the mean calyx diameter slightly decreased and ranged from 1,110 μm to 1,199 μm at the end of experiments. The values of buds ranged from 328 μm to 744 μm and did not show any
 307 308 309 310 311 312 313 314 	Calyx diameter of polyps and buds The initial mean calyx diameter of polyps in each bottle ranged from 1,370 μm to 1,525 μm, and then was stable until day 6 in the field growth experiments (Fig. 6A). After that day, the mean calyx diameter slightly decreased and ranged from 1,110 μm to 1,199 μm at the end of experiments. The values of buds ranged from 328 μm to 744 μm and did not show any clear trends in variation throughout the whole period of the experiment (Fig. 6B). The mean ±

316	and 622 \pm 55 μm in the first feeding experiment, respectively, and 1,146 \pm 47 μm and 522 \pm
317	22 μ m in the second feeding experiment, respectively.
318	
319	Microzooplankton abundance and biomass and polyp feeding responses in field feeding
320	experiments
321	
322	Abundances of microzooplankton on day 4 (August 27) and day 14 (6 September) were
323	mostly dominated by ciliates and dinoflagellates, which accounted for over 90% of total
324	microzooplankton abundance during both periods. The biomass of the microzooplankton
325	assemblages consisted mainly of ciliates, dinoflagellates, molluscs (mainly bivalve larvae),
326	copepods (consisting mostly of Oithona spp.), and copepod nauplii (Table 1). Molluscs
327	accounted for the largest or second-largest portion of the total biomass. There was no
328	difference between the abundances of ciliates in the two periods, although the biomass on day
329	14 was higher than that on day 4. Abundances and biomasses of dinoflagellates on day 4 were
330	6.6 and 7.7 times higher than those on day 14, respectively.
331	Among the microzooplankton taxa, ciliates and dinoflagellates were both numerically
332	dominated by small types of aloricate ciliates (<30 μm) and dinoflagellates (<50 μm) on day
333	4 (Table 2). On day 14, tintinnid ciliates and small thecate dinoflagellates (<50 μ m)

334	constituted the greatest portion of the total abundance of protists. Biomass of all protists was
335	mostly attributable to large athecate dinoflagellates ($\geq 50 \ \mu m$) on day 4 and to large aloricate
336	ciliates (>50 µm) on day 14.
337	At the end of the feeding incubations, the abundances of molluscs in the first experiment
338	and of copepods, copepod nauplii, and Oikopleura in the second experiment did not decrease
339	significantly in the experimental treatment compared to in the control treatment. However, in
340	both experiments, the clearance rates of ciliates, dinoflagellates, and molluscs were
341	significantly higher than zero ($p < 0.05$, one sample <i>t</i> -test), and the highest significant
342	clearance rate was recorded with respect to rotifers (mean \pm SE: 0.28 \pm 0.03 L polyp ⁻¹ d ⁻¹) in
343	the first experiment (Table 1). High ingestion rates (> 1 μ gC polyp ⁻¹ d ⁻¹) were found for
344	dinoflagellates in the first experiment and for ciliates and molluscs in the second experiment,
345	and significant carbon ingestion rates were recognized for ciliates, dinoflagellates, molluscs,
346	and copepod nauplii in both experiments (Table 1). Carbon ingestion rates for total
347	microzooplankton in the first and second experiments were 4.05 and 3.27 μ gC polyp ⁻¹ d ⁻¹ ,
348	respectively.
349	Significantly positive or negative electivity ($p < 0.05$, one sample <i>t</i> -test) on
350	microzooplankton groups was observed for rotifers and copepods in the first experiment and

351	for molluscs and copepods in the second experiment (Table 1). Copepods were the only taxon
352	for which significantly negative electivity was recognized in both experiments.
353	As for the feeding activities of polyps on ciliates and dinoflagellates, significant clearance
354	rates and ingestion rates ($p < 0.05$, one sample <i>t</i> -test) were found towards all groups, except
355	for feeding on small athecate dinoflagellates in the first experiment and large athecate
356	dinoflagellates in the second experiment (Table 2). Ingestion rates on large aloricate ciliates
357	were relatively high in both experiments (Fig. 7). Relatively high ingestion rates on small
358	thecate dinoflagellates and large athecate dinoflagellates were recorded in the first
359	experiment, whereas such high rates with respect to this taxonomic group were not found in
360	the second experiment (Fig. 7).
361	Among all size groups of ciliates and dinoflagellates in the first experiment, significantly
362	positive electivity was observed towards large sized (> 50 μ m) and medium sized (30-50 μ m)
363	groups of aloricate ciliates, and on both size groups of thecate dinoflagellates, whereas
364	significant negative electivity was recognized towards both size groups of athecate
365	dinoflagellates. In the second experiment, the only electivity was on small athecate
366	dinoflagellates indicating a significant positive value ($p < 0.05$, one sample <i>t</i> -test) (Table 2).
367	

368

Discussion

370	Growth responses of polyps in microzooplankton assemblages
371	
372	Clear increases of bud production observed during the first 12–14 days of incubation in the
373	<200-µm seawater fraction suggested that polyps performed active asexual reproduction when
374	reared in field microzooplankton assemblages. Aurelia coerulea polyps fed ciliates (3.8–5.8
375	μ gC ind ⁻¹) in a laboratory experiment, by providing cultured ciliates, were reported to have
376	carbon specific growth rates of 0.11–0.24 d^{-1} (Fig. 7 in Kamiyama 2017), which is consistent
377	with the growth rates $(0.1-0.2 d^{-1})$ observed in the present study.
378	The bud production slowed down or stopped after 10–14 days of incubation. It may be
379	possible to speculate two explanations for this result: limitations on the energy uptake
380	necessary to support production, and the carrying capacity of the space within each well for
381	produced buds. Microzooplankton biomass declined on days 10-14, possibly limiting energy
382	uptake and making it impossible to continue bud production at the rate observed in the first 10
383	days. The limitation of total energy uptake may involve a decrease in the feeding frequency of
384	polyps, which would reduce bud production (Keen & Gong 1989). In addition, the large
385	number of buds produced may have limited the space available for new buds (Willcox et al.
386	2007).

387	Contrary to expectations, a small number of buds were produced in the control treatment
388	(GF/C filtration fraction) during the first 4 days. The reason for this is difficult to explain.
389	Since polyps used in this growth experiment were reared without prey in filtered seawater
390	during one week to get them to adhere to the plates, it is difficult to consider that carry-over
391	from prey energy obtained in the stock culture caused such bud production in the control
392	treatment. Energy contributions from dissolved organic matter (Schick 1973, 1975) cannot be
393	ruled out. However, because polyp carbon biomass did not increase in the control treatment
394	during the incubation period, it is reasonable to speculate that physiological changes in the
395	polyps induced by a certain factor in natural seawater temporarily stimulated polyp
396	reproduction at the expense of reducing body energy stores.
397	The calyx diameter of parent polyps in the experimental treatment decreased after day 10
398	in the field growth experiment, when the increase of total carbon contents of parent polyps
399	and their buds was stagnant. However, new bud production partly continued in this period.
400	Since parent polyps dispensed prey energy into bud production, they might decrease in size to
401	save metabolic energy. The calyx diameter of Aurelia polyps is also influenced by differences
402	in prey organisms (Kamiyama 2013), and by the frequency of prey consumption, genetic
403	characteristics and interactions of these factors (Keen & Gong 1989).

405 Feeding responses

407	Because polyps are generally considered to be carnivorous (e.g., Arai 1997), Artemia
408	nauplii have been used as a representative zooplanktonic prey item in eco-physiological
409	studies (Lucas et al. 2012). However, studies on the actual natural prey items and feeding
410	habits of A. coerulea polyps are severely lacking. Recent studies have reported that polyps
411	can feed on microzooplankton such as ciliates and dinoflagellates in the laboratory, but they
412	cannot do so with nanoplankton (Kamiyama 2011, Huang et al. 2015).
413	In the present study, the total microzooplankton ingestion rates estimated from the two
414	experiments were estimated as 4.1 and 3.3 μ gC polyp ⁻¹ d ⁻¹ , respectively. These rates account
415	for 9–11% of the polyp's body carbon (mean 37.0 μ gC ind ⁻¹) estimated from their initial
416	calyx diameter. Previous quantitative estimates of polyp feeding activity on microzooplankton
417	have been limited to ciliates (Kamiyama 2011). Kamiyama (2011) reported a maximum
418	feeding rate of A. coerulea polyps on a large ciliate species (Favella taraikaensis Hada, 1932)
419	in laboratory experiments of 0.33 μ gC polyp ⁻¹ h ⁻¹ , or 7.92 μ gC polyp ⁻¹ d ⁻¹ . There data are ca.
420	two times higher than the rates observed in the present study. For this comparison, it is
421	necessary to pay attention to differences in prey source and prey biomass. If the carbon
422	biomasses of microzooplankton in the present feeding experiments (106.8 and 86.3 μ gC L ⁻¹)

423	are fitted to the feeding response equations of A. coerulea polyps in the function of ciliate
424	carbon biomass in laboratory experiments (Kamiyama 2011, Table 3), the feeding rates are
425	estimated to be 2.5 and 2.2 μ gC polyp ⁻¹ d ⁻¹ . The ingestion rate estimated in the present study
426	accounted for ca. 1.5 times higher than the values estimated in the same carbon biomass of
427	ciliate prey. This implies that organisms other than ciliates were able to contribute to the prey
428	energy source for <i>A. coerulea</i> polyps as well.
429	
430	Potential errors in estimating the feeding rates of polyps
431	
432	The bottle incubation experiment applied in the present study is advantageous for
433	examining feeding rates on some prey items simultaneously, and allows us to examine a
434	predator's selectivity for prey items. However, this method potentially has the possibility of
435	causing several artificial errors in estimating feeding rates. In particular, the following errors
436	should be considered for interpretation of the results of the present study.
437	The first potential error is due to the assumption that decreases in prey is caused only by
438	the feeding of polyps in the bottle. If the tentacles of polyps physically caused damage and
439	subsequent destruction of fragile prey such as protists before the feeding process, the feeding
440	activities with respect to fragile prey would be overestimated. However, Kamiyama (2011)

441	reported that polyps can catch aloricate ciliates with their tentacles and transport them into the
442	mouth, and confirmed the assimilation of such prey into their bodies, supporting the
443	presumption that mechanical damage leading to losses of protist prey in the capture process
444	were not consequential in the present study. In addition, high gross growth efficiency of
445	polyps in the field seawater as outlined supports the conclusion that the feeding rates of
446	polyps were not overestimated.
447	A second potential error could be due to "bottle effects" as often pointed out in
448	zooplankton feeding experiments, such effects include changes in predator grazing or prey
449	growth over time due to differing nutrient, light or turbulence regimes, crowding of grazers,
450	interactions with container walls, and trophic cascades of food web effects (Båmstedt et al.
451	2000, Jungbluth et al. 2017). The bottle effects become serious if the effects differentially
452	occur in the experimental treatment compared to the control treatment. In the present study,
453	interaction among taxa of microzooplankton and trophic cascades due to polyp feeding during
454	the two days of incubation are potential factors to cause over- or under-estimation of the
455	feeding activities of polyps in the present study. Further studies are needed to confirm the
456	results of the present study.
457	

Prey selectivity

460	Because polyps feed passively, their selectivity probably depends on whether they have
461	the opportunity to encounter prey and can capture them efficiently. The former factor is
462	subject to prey abundance, and the latter factor is influenced by prey features such as prey size
463	and motility, and by the types and sizes of nematocysts on the tentacles of the polyps,
464	assuming the function of nematocysts in prey capture of Aurelia polyps is the same as for
465	hydrozoans (Purcell 1984, Purcell and Mills 1988). In the present study, although polyps
466	ingested many prey taxa, negative selectivity for copepods was observed in both feeding
467	experiments. One study on soft coral polyps (Paramuricera clavate [Risso, 1826]) has
468	reported highly positive selectivity towards highly abundant, low-motility organisms such as
469	copepod eggs and nauplii and other benthic invertebrate eggs and larvae, and negative
470	selectivity towards copepods throughout the research year (Coma et al. 1994). The negative
471	selectivity may be explained by the swimming characteristics of copepods with their high
472	escape abilities from predators. On the contrary, Ishii and Takahashi (2021) reported high
473	ingestion rates (6.7 μ gC polyp ⁻¹ d ⁻¹) of <i>Aurelia coerulea</i> polyps on the small copepod <i>Oithona</i>
474	davisae at high densities (2500 inds L ⁻¹) in Tokyo Bay. Although the copepod species in these
475	feeding experiments were dominated by <i>Oithona</i> spp., the abundance (ca. 40 inds L ⁻¹) was far
476	lower than the highest level in Tokyo Bay and showed a lower contribution (< 1%) in terms

477	of total microzooplankton abundance as well. Seawater passing through a 200 μ m plankton
478	net was used for the present feeding experiments, implying that some of the Oithona spp.
479	were removed because the body size of this group generally exceeds 300 μ m (Uye 1982).
480	Such low abundance and relatively low contribution of copepods in planktonic assemblages
481	might diminish opportunities to capture copepods and have caused the apparent negative
482	selectivity towards copepods observed in this study.
483	Feeding activities of polyps on different size groups of ciliates and dinoflagellates did not
484	show consistent similarities in the two feeding experiments. However, as for aloricate ciliates,
485	lower clearance rates in the first experiment and lower ingestion rates in the second
486	experiment were both observed on the smallest group (<30 μ m), suggesting a relatively low
487	availability of the small group of aloricate ciliates as prey for the polyps. This corresponds
488	well with the results of a previous laboratory study reporting no or less feeding responses of
489	Aurelia polyps on ciliates less than 30 μ m in size (Kamiyama 2011). On the other hand, in
490	both experiments, significantly higher ingestion rates were observed towards the largest group
491	(>50 μ m) of aloricate ciliates, rather than towards other size groups, and significantly positive
492	electivity was also observed towards this group in the first experiment. These results suggest
493	that larger aloricate ciliates are an essential prey source for Aurelia polyps. It is difficult to
494	clearly explain why the difference of positive and negative electivity towards $<50 \ \mu m$

495	athecate dinoflagellates in Exp. 1 and Exp.2 was observed. This is possibly related to the large
496	difference in abundance of this group in the two feeding experiments.
497	
498	Prey consumption and contribution of each microzooplankton taxon
499	
500	To clarify the contribution of each microzooplankton taxon in the growth experiments, I
501	estimated the carbon contribution of each prey taxon to polyp growth using the daily carbon
502	biomass of each taxon and the clearance rate data obtained in the two feeding experiments.
503	Clearance rates in the first and second experiments were fitted to data from days 0-8 and 9-
504	16, respectively. Extremely high dinoflagellate abundance on day 0 was associated with high
505	rates of consumption of this taxon, and other microzooplankton also contributed as prey
506	sources during the following days (Fig. 8).
507	Furthermore, daily assimilation of prey carbon was estimated by the total carbon
508	consumption an assuming assimilation efficiency of 0.8 (Schneider 1989), and then compared
509	with the daily carbon metabolic demand of a polyp. This metabolic demand was estimated by
510	fitting average temperature (26 °C) during the field growth experiment into the relationship
511	between carbon weight-specific respiration rate (R; $\mu gO_2 \mu gC^{-1} d^{-1}$) of Aurelia polyps and
512	temperature (T; °C), expressed by $R = 0.0173 \times e^{(0.0657 \times T)}$ (Ikeda et al. 2017) assuming a

513	respiratory quotient of 0.85 due to protein-dominated metabolism (Schneider 1989). As a
514	result, the mean metabolic carbon demand of polyps in the experimental treatments was
515	estimated to be 1.12 μ gC polyp ⁻¹ d ⁻¹ during the incubation period (Fig. 8). The carbon
516	assimilation of a polyp mostly exceeded daily metabolic carbon demand, but did not exceed
517	this level on day 8 and day 12. This partly supports the observation of stagnation of polyp
518	growth after day 10 of the incubation.
519	In spite of the difference in daily consumption, mean consumption over the whole period
520	indicated that polyps ingested relatively large amounts of carbon from dinoflagellates, ciliates,
521	molluscs, and copepod nauplii, each taxon of which contributed 41, 15, 12 and 12 % of total
522	carbon ingestion and the sum of them collectively accounted for 79% of the total value. This
523	suggests that these organisms played important roles in polyp bud production during the
524	experimental period at the site in the present study. The importance of ciliates has been
525	pointed out in previous studies (Kamiyama 2011, 2013). Although polyps can feed on larger
526	dinoflagellates, they are probably unable to do so with small dinoflagellates (Kamiyama 2011,
527	Huang et al. 2015). The abundance and biomass of dinoflagellates on the first day (23 August)
528	was far higher than during the first feeding experiment, and this difference was mostly
529	accounted for by an abundance of the cate dinoflagellates that are less than 50 μm in size (Fig.
530	4). In general, the clearance rates of filter feeder animals decrease with increasing abundance

531	of prey organisms above a critical level (Frost 1972), and this response could be similar for
532	polyp feeding. Hence, the estimation of carbon ingestion by the application of clearance rates
533	measured during the feeding experiments to the extremely high abundances of thecate
534	dinoflagellates observed on day 0 may have led to an overestimation of carbon ingestion at
535	that time.
536	
537	Relationships between growth responses and estimated prey consumption
538	
539	Relationships between the carbon growth rate of polyps and the cumulative carbon
540	consumption of microzooplankton assemblages were analyzed using two types of linear
541	regression models. These models were fitted to the data collected over the whole incubation
542	period, with the exception of the first and last day of incubation. I assumed that the carbon
543	contents of polyps, including buds produced on each day, reflected the cumulative carbon
544	ingested from prey consumed in the previous two and four days for these models (Fig. 9)
545	because the increase of buds started with a lag period of 2 or 4 days in the growth experiment
546	(Fig 5A). The gross growth efficiency, as indicated by the slope of the regression line, was
547	75% for a 2 day lag-period and 43% for a 4 day lag-period. Kamiyama (2013) estimated the
548	gross growth efficiency of A. coerulea polyps feeding on ciliates in laboratory experiments as

549	42-64% (mean 54%), which is close to the value estimated in this study. The high gross
550	growth efficiency observed during this study period using field microzooplankton
551	assemblages suggests that A. coerulea polyps can efficiently utilize energy from
552	microzooplankton prey to fuel growth, even under field conditions.
553	
554	Conclusions and ecological implications
555	
556	Based on the results of the field growth and feeding experiments, A. coerulea polyps can
557	utilize a diverse assemblage of common microzooplankton, such as ciliates, dinoflagellates,
558	molluscs, and copepod nauplii, to actively produce new buds when exposed to natural
559	planktonic assemblages of less than 200 μ m in size. The specific growth rate of polyps in the
560	growth experiment corresponded to the value reported in previous laboratory experiments,
561	suggesting that polyps can reproduce asexually under field conditions. Whereas polyps
562	showed negative selectivity for copepods in both feeding experiments, they did not
563	consistently show significant selectivity for the main components of microzooplankton such
564	as ciliates and dinoflagellates in the two feeding experiments. Hence, regardless of
565	fluctuations in the main taxonomic components of microzooplankton, polyps could efficiently
566	utilize the energy of microzooplankton prey for growth under field conditions.

567	Other than microzooplankton, a variety of larger zooplankton such as copepods,
568	chaetognaths, ctenophores, hydromedusae, molluscs and fish larvae, and planulae can be
569	consumed by Aurelia polyps (Gröndahl 1988, Östman 1997), and occasionally they can feed
570	on organisms larger than themselves (Lucas et al. 2012). If they can encounter such large prey
571	they would efficiently get prey energy from them, suggesting that they are more important
572	prey for the polyps from a bioenergetic viewpoint. In fact, results from laboratory experiments
573	and the application of a bioenergetic model to field zooplankton assemblages indicated that
574	small copepods and other mesozooplankton can support potential growth rates of polyps in
575	temperate coastal waters (Ikeda et al. 2017, Ishii and Takahashi 2021). However, abundances
576	of meso- and macrozooplankton in natural seawater are generally one or two orders of
577	magnitude lower than those of microzooplankton (e.g., Uye et al. 1996, Uye & Shimazu
578	1997), possibly indicating that the polyps do not actually have many opportunities to
579	encounter such large prey. Furthermore, it was confirmed that large copepods and other
580	crustaceans often escape from the tentacles of polyps (Östman 1997). At present, quantitative
581	information on the feeding activities of Aurelia polyps on microzooplankton, large
582	zooplankton and benthic animals in natural assemblages has not yet sufficiently accumulated.
583	This information, if gathered during further research, will allow us to evaluate the prey

600	Acknowledgments
599	
598	the jellyfish spiral theory.
597	contribute to an increase in A. coerulea polyps through asexual reproduction, partly support
596	which indicate that planktonic communities dominated by microzooplankton can also
595	which in turn are suitable prey for microzooplankton. The results obtained in this study,
594	frequent occurrence of jellyfish blooms and also enhance the dominance of nanoplankton,
593	& Ueta 2004), coastal eutrophication and/or changes in nutrient components promote the
592	therefore be important prey sources for A. coerulea polyps. In the jellyfish spiral theory (Uye
591	abundant subset of zooplankton, can easily be encountered in field seawater and may
590	stress and limitations in prey availability. Microzooplankton, which are a numerically
589	However, because these stages have little to no mobility, they are subject to environmental
588	scyphozoans, the polyp and ephyra stages play a key role in determining population size.
587	assemblages can serve as prey for A. coerulea polyps and promote asexual reproduction. In
586	The results of this study demonstrate that microzooplankton in natural plankton
585	effects of them on the population dynamics of the polyp stage of A. coerulea.
584	importance for each zooplankton group in natural zooplankton assemblages and to clarify the

602	I thank Dr. H. Zenitani (formerly of the National Research Institute of Fisheries and
603	Environment of Inland Sea, Japan Fisheries Research and Education Agency) for providing
604	the initial strains of A. coerulea polyps. This study was supported by a grant from the
605	Agriculture, Forestry and Fisheries Research Council (POMAL-STOPJELLY Project).
606	

607	References
608	
609	Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, London, 337 pp.
610	Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman MR (2000) Feeding. In: ICES
611	Zooplankton Methodology Manual (eds Harris R, Wiebe PH, Lenz J, Skjoldal HR,
612	Huntley M). Academic Press, London, pp. 297-380.
613	Coma R, Gili J-M, Zabala M, Riera T (1994) Feeding and prey capture cycles in the
614	aposymbiontic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 115: 257-270.
615	Fisheries Agency (1989) Zooplankton research manual. Fisheries Agency Research Division,
616	Tokyo, 19 pp. (in Japanese)
617	Frost, BW (1972) Effects of size and concentration of food particles on the feeding behavior
618	of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17: 805-815.
619	Gröndahl, F (1988) Interactions between polyps of Aurelia aurita and planktonic larvae of
620	scyphozoans: an experimental study. Mar Ecol Prog Ser 45: 87-93.
621	Han CH, Uye S (2010) Combined effects of food supply and temperature on asexual
622	reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l.
623	Plankton Benthos Res 5: 98–105.

624	Heinbokel JF (1978) Studies on the functional role of tintinnids in the Southern California
625	Bight. I. Grazing and growth rates in laboratory cultures. Mar Biol 47: 177–189.
626	Hirota R (1986) Zooplankton. In: Coastal environmental research manual (ed The
627	Oceanographic Society of Japan). Kouseishakouseikaku, Tokyo, pp. 177–191. (in
628	Japanese)
629	Huang X, Huang B, Zeng Y, Li S(2015) Effect of dinoflagellates and diatoms on the feeding
630	response and survival of Aurelia sp. polyps. Hydrobiologia 754: 179–188.
631	Ikeda H, Mizota C, Uye S (2017) Bioenergetic characterization in Aurelia aurita (Cnidaria:
632	Scyphozoa) polyps and application to natural polyp populations. Mar Ecol Prog Ser 568:
633	87-100.
634	Ishii H, Watanabe T (2003) Experimental study of growth and asexual reproduction in
635	Aurelia aurita polyps. Sessile Org 20: 69–73.
635 636	<i>Aurelia aurita</i> polyps. Sessile Org 20: 69–73. Ishii H, Takahashi Y (2021) Ingestion and growth rates of <i>Aurelia coerulea</i> polyps fed
635636637	<i>Aurelia aurita</i> polyps. Sessile Org 20: 69–73. Ishii H, Takahashi Y (2021) Ingestion and growth rates of <i>Aurelia coerulea</i> polyps fed naturally occurring copepods as food. Sessile Org 38: 15–19.
635636637638	 Aurelia aurita polyps. Sessile Org 20: 69–73. Ishii H, Takahashi Y (2021) Ingestion and growth rates of Aurelia coerulea polyps fed naturally occurring copepods as food. Sessile Org 38: 15–19. Ivlev VS (1961) Experimental Ecology of the Feeding of Fishes. Yale University Press, New
 635 636 637 638 639 	 Aurelia aurita polyps. Sessile Org 20: 69–73. Ishii H, Takahashi Y (2021) Ingestion and growth rates of Aurelia coerulea polyps fed naturally occurring copepods as food. Sessile Org 38: 15–19. Ivlev VS (1961) Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, pp. 302.
 635 636 637 638 639 640 	 Aurelia aurita polyps. Sessile Org 20: 69–73. Ishii H, Takahashi Y (2021) Ingestion and growth rates of Aurelia coerulea polyps fed naturally occurring copepods as food. Sessile Org 38: 15–19. Ivlev VS (1961) Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, pp. 302. Jungbluth MJ, Selph KE, Lenz PH, Goetze E (2017) Incubation duration effects on copepod

642	Kamiyama T (2011) Planktonic ciliates as a food source for the scyphozoan Aurelia aurita
643	(s.l.): Feeding activity and assimilation of the polyp stage. J Exp Mar Biol Ecol 407: 207–
644	215.
645	Kamiyama T (2013) Planktonic ciliates as food for the scyphozoan Aurelia aurita (s.l.):
646	Effects on asexual reproduction of the polyp stage. J Exp Mar Biol Ecol 445: 21–28.
647	Kamiyama T (2017) Planktonic ciliates as food for the scyphozoan Aurelia coerulea: feeding
648	and growth responses of ephyra and metephyra stages. J Oceanogr 74: 53-63.
649	Keen SL, Gong AJ (1989) Genotype and feeding frequency affect clone formation in a marine
650	Cnidarian (Aurelia aurita Lamarck 1816). Funct Ecol 3: 735-745.
651	Lawley JW, Gamero-Mora1 E, Maronna MM, Chiaverano LM, Stampar SN, Hopcroft RR,
652	Collins AG, Morandini AC (2021) The importance of molecular characters when
653	morphological variability hinders diagnosability: systematics of the moon jellyfish genus
654	Aurelia (Cnidaria: Scyphozoa). PeerJ 9:e11954 DOI 10.7717/peerj.11954.
655	Liu WC, Lo WT, Purcell JE, Chang HH (2009) Effects of temperature and light intensity on
656	asexual reproduction of the scyphozoan Aurelia aurita (L.) in Taiwan. Hydrobiologia
657	616: 247–258.
658	Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps informing

and maintaining scyphomedusa populations. Adv Mar Biol 63: 133-196.

660	Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates,
661	diatoms, and other protist plankton. Limnol Oceanogr 45: 69-579.
662	Möller H (1980) Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany
663	(FRG). Mar Biol 60: 123–128.
664	Möller H (1984) Reduction of larval herring populations by jellyfish predation. Science 224:
665	621–622.
666	Olesen NJ (1995) Clearance potential of jellyfish Aurelia aurita, and predation impact on
667	zooplankton in a shallow cove. Mar Ecol Prog Ser 124: 63–72.
668	Östman, C (1997) Abundance, feeding behaviour and nematocysts of scyphopolyps
669	(Cnidaria) and nematocysts in their predator, the nudibranch Coryphella verrucosa
670	(Mollusca). Hydrobiologia 355: 21-28.
671	Pierce RW, Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev Aquat
672	Sci 6: 139–181.
673	Purcell JE (1984) The functions of nematocysts in prey capture by epipelagic Siphonophores
674	(Coelenterata, Hydrozoa). Biol Bull 166: 310-327.
675	Purcell JE (1997) Pelagic cnidarians and ctenophores as predators; selective predation,
676	feeding rates and effects on prey populations. Ann Inst Oceanogr, Paris 73: 125–137.

677	Purcell JE, Mills CE (1988) The correlation of nematocyst types to diets in pelagic Hydrozoa.
678	In: The Biology of Nematocysts (eds Hessinger DA, Lenhoff HM). Academic Press,
679	San Diego, pp.463-485.
680	Purcell JE, White JR, Nemazie DA, Wright DA (1999) Temperature, salinity and food effects
681	on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar
682	Ecol Prog Ser 180: 187–196.
683	Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine
684	'oligotrichous' ciliates from estuarine and coastal waters. Limnol Oceanogr 34: 1097-
685	1103.
686	Rajagopal S, Nair KVK, Azariah J (1989) Some observations on the problem of jellyfish
687	ingress in a power station cooling system at Kalpakkam, east coast of India. Mahasagar
688	22: 151–158.
689	Sato R, Tanaka U, Ishimaru T (2001) House production by Oikopleura dioica (Tunicata,
690	Appendicularia) under laboratory conditions. J Plankton Res 23: 415-423.
691	Schick, JM (1973) Effects of salinity and starvation on the uptake and utilization of dissolved
692	glycine by Aurelia aurita polyps. Biol Bull 144: 172–179.

693	Schick JM (1975) Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae:
694	temperature effects on the uptake process; nutritional role of dissolved amino acids.
695	Biol Bull 148: 117–140.
696	Schneider G (1989) Estimation of food demands of Aurelia aurita medusae populations in the
697	Kiel Bight/Western Baltic. Ophelia 31: 17–27.
698	Schneider G, Behrends G (1994) Population dynamics and the trophic role of Aurelia aurita
699	medusae in the Kiel Bight and western Baltic. I.C.E.S. J Mar Sci 51: 359-367.
700	Uye S (1982) Length-weight relationships of important zooplankton from the Inland Sea of
701	Japan. J Oceanogr Soc Jpn 38: 149–158.
702	Uye S, Shimazu T (1997) Geographical and seasonal variations in abundance, biomass and
703	estimated production rates of meso- and macrozooplankton in the Inland Sea of Japan. J
704	Oceanogr 53: 529-538.
705	Uye S, Ueta Y (2004) Recent increase of jellyfish populations and their nuisance to fisheries
706	in the Inland Sea of Japan. Bull Jpn Soc Fish Oceanogr 68: 9–19. (in Japanese with
707	English abstract)
708	Uye S, Nagano N, Tamaki H (1996) Geographical and seasonal variations in abundance,
709	biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. J
710	Oceanogr 52: 689–703.

711	Willcox S, Moltschaniwsky NA, Crawford C (2007) Asexual reproduction in scyphistomae of
712	Aurelia sp.: Effects of temperature and salinity in an experimental study. J Exp Mar Biol
713	Ecol 353: 107-114.
714	Yasuda T (1988) Studies on the common jelly-fish, Aurelia aurita (Linné). Japan Fisheries
715	Resource Conservation Association, Tokyo, 139 pp. (in Japanese with English abstract)
716	
717	

718	Figure	legends
/10	I Igui c	reserves

720	Fig. 1. Schematic diagrams of experimental setup. (A) Attachment plates for Aurelia coerulea
721	polyps. (B) Plate configuration inside each bottle. (C) Suspended bottles at the sampling site
722	for seawater in the field growth experiment.
723	
724	Fig. 2. (A) Environmental parameters and (B) abundance and (C) biomass of
725	microzooplankton in seawater at the study site during the field growth experiment.
726	
727	Fig. 3. Ciliates. (A) Total abundance and (B) the contribution of each taxon, and (C) total
728	carbon biomass and (D) the contribution of each taxon during the field growth experiment.
729	
730	Fig. 4. Dinoflagellates. (A) Total abundance and (B) the contribution of each taxon, and (C)
731	total carbon biomass and (D) the contribution of each taxon during the field growth
732	experiment.
733	
734	Fig. 5. Changes in (A) the cumulative number of buds produced by <i>Aurelia coerulea</i> polyps
735	and (B) estimated carbon contents of polyps and their produced buds. Lines labeled EXP1-4

736	show mean values for experimental treatment bottles $1-4$ ($n = 4$ polyps per bottle), and lines
737	labeled Ctr show mean values for the no-prey control treatment ($n = 3$ polyps). Bars indicate
738	standard errors.
739	
740	Fig. 6 Standardized ingestion rates per polyp on each size group of aloricate ciliates (AC),
741	thecate dinoflagellates (TD) and athecate dinoflagellates (ATD) in the two field feeding
742	experiments (Exp. 1: 27 August and Exp.2: 6 September). Bars indicate standard errors (n =
743	4).
744	
745	Fig. 7. Changes in the mean calyx diameters of (A) original polyps set into the bottle and (B)
746	buds produced in the bottle. Bars indicate standard errors of calyx diameters of the original
747	polyps (n=4) and the values of produced buds after day 2 (n=4 to 37).
747 748	polyps (n=4) and the values of produced buds after day 2 (n=4 to 37).
747 748 749	polyps (n=4) and the values of produced buds after day 2 (n=4 to 37). Fig. 8. Changes in estimated daily microzooplankton consumption and assimilation by
747 748 749 750	polyps (n=4) and the values of produced buds after day 2 (n=4 to 37). Fig. 8. Changes in estimated daily microzooplankton consumption and assimilation by <i>Aurelia coerulea</i> polyps and the metabolic carbon demand during the field growth
 747 748 749 750 751 	polyps (n=4) and the values of produced buds after day 2 (n=4 to 37). Fig. 8. Changes in estimated daily microzooplankton consumption and assimilation by <i>Aurelia coerulea</i> polyps and the metabolic carbon demand during the field growth experiment. The carbon biomass of consumed microzooplankton was estimated from the
 747 748 749 750 751 752 	 polyps (n=4) and the values of produced buds after day 2 (n=4 to 37). Fig. 8. Changes in estimated daily microzooplankton consumption and assimilation by <i>Aurelia coerulea</i> polyps and the metabolic carbon demand during the field growth experiment. The carbon biomass of consumed microzooplankton was estimated from the biomass of each taxon and the taxon-specific clearance rate observed during 23 August to 29

755	Fig. 9. Relationship between the estimated carbon content of Aurelia coerulea polyps and
756	buds on each sampling day and the cumulative microzooplankton carbon consumed in the
757	field growth experiment. Two linear regression lines (solid line and dashed line) were
758	calculated using all plotted data, except for data collected on the first and last day of
759	incubation, assuming that polyp carbon content reflected the biomass of microzooplankton
760	carbon consumed 2 days previously (filled circles) and 4 days previously (open circles),
761	respectively.
762	