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Abstract 29 

Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-30 

maximization algorithm for accurate read classification. We compared it to conventional short- and 31 

long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the 32 

necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of 33 

the precise microbiome. 34 

Keywords: Emu; full-length 16S rRNA metabarcoding analysis; microbiome 35 

 36 

Text 37 

The 16S rRNA gene-based metabarcoding strategy, commonly used for understanding 38 

bacterial taxonomy, offers species-level classification necessary for accurate microbiome 39 

interpretation (Castellarin et al., 2012; Pantha et al., 2021; Scher et al., 2013). Illumina short-read 40 

sequencing platforms and QIIME2 (bioinformatics package) are widely used for processing and 41 

analyzing microbiome data (Bolyen et al., 2019); however, short reads (≤600 bp) provide limited 42 

species-level information (Sadowsky et al., 2017; Winand et al., 2019). Nanopore long-read 43 

sequencers address this drawback with the cloud-based analysis platform EPI2ME applicable for 44 

long-read data analysis (Ciuffreda et al., 2021). However, EPI2ME shows high sequencing errors, 45 

39.50% misclassified and 25.46% unclassified reads at the species level, when using microbial-46 

community DNA standard (Winand et al., 2019). In contrast, Emu, a novel Nanopore long-read 16S 47 

rRNA metabarcoding pipeline developed for species-level microbial community profiling using the 48 

expectation-maximization algorithm, enables correct generation of taxonomic outlines with reduced 49 

sequencing errors (Curry et al., 2022). Nevertheless, the usefulness of this workflow compared with 50 
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that of other bioinformatic approaches using well-characterized mock samples has not been 51 

extensively examined. 52 

Here, we aimed to evaluate the utility of Emu in comparison with taxonomic results of current 53 

short- and long-read analysis pipelines using ZymoBIOMICS Microbial Community DNA Standard 54 

(Zymo Research Corp., Irvine, CA, USA) with known 16S rRNA gene compositions. DNA mixture 55 

of each plasmid-cloned single copy of the 16S rRNA genes derived from Eggerthella lenta ATCC 56 

43055, Staphylococcus aureus ATCC 29213, Limosilactobacillus fermentum ATCC 9338, 57 

Bacteroides fragilis ATCC 25285, Clostridioides difficile R20291, Pseudomonas aeruginosa ATCC 58 

27853, Escherichia coli ATCC 25922, and a Campylobacter jejuni clinical strain was prepared to 59 

reduce the effects of PCR bias (Nagai et al., 2022).  60 

The V3-V4 region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform, 61 

per the manufacturer’s instructions (Illumina, 2015). Taxonomic assignment was performed using 62 

amplicon sequence variants with the QIIME2 Naive Bayes classifier pre-trained on the SILVA 63 

reference database (release 138) (Bokulich et al., 2018; Quast et al., 2013). Full-length 16S rRNA 64 

gene sequencing was performed using the 16S Barcoding Kit containing primer set, MinION 65 

sequencer, R9.4.1 flow cell, and MinKNOW v21.11.7 (Oxford Nanopore Technologies). The 66 

number of sequences from each sample was adjusted using SeqKit v2.2.0 (Shen et al., 2016). 67 

Generated long-read data were processed using Emu v3.4.4 (Curry et al., 2022) and EPI2ME v.3.5.7 68 

(Ciuffreda et al., 2021). We used FastQC (Andrew, 2010) to confirm the expected sequence length 69 

distribution of short- and long-read data (Supplementary Fig. 1).  70 

In the commercial sample analysis, all bacterial taxa at the genus level were identified using 71 

the three pipelines, barring Salmonella when using QIIME2 (Fig. 1A and 1C). At the species level, 72 

Emu identified all taxa in both commercial and in-house samples, whereas EPI2ME failed to detect 73 



   

   5 

E. coli in the commercial sample and QIIME2 failed to classify species other than L. fermentum and 74 

B. fragilis (Fig. 1B and 1D). Thus, QIIME2 use is considered challenging for species-level 75 

discrimination owing to incomplete coverage of the 16S rRNA gene (Sadowsky et al., 2017). 76 

EPI2ME identified Listeria monocytogenes in commercial and E. coli and C. difficile in in-house 77 

samples at low abundance (<1%). Furthermore, 16.8% of EPI2ME reads were misidentified as those 78 

of Listeria welshimeri in the commercial sample, consistent with previous study findings (Nanopore, 79 

2016); these reads could have been derived from L. monocytogenes. These Listeria spp. show 98.8% 80 

similarity in their 16S rRNA sequences (Collins et al., 1991), demanding a stricter classification 81 

approach for bacteria with highly homologous 16S rRNA sequences. EPI2ME does not offer 82 

removal or correction of erroneous sequences leading to increased misclassified reads (Winand et 83 

al., 2019). Conventional analytical pipelines lack discriminability resulting in limited taxa 84 

identification and increased misclassified and unclassified reads. Contrastingly, Emu employs a 85 

homology-aware alignment likelihood algorithm capable of highly accurate taxonomic classification 86 

based on read alignments to multiple reference sequences (Curry et al., 2022). This approach enables 87 

better classification by contributing to reduced false positives and improved discrimination between 88 

genetically similar bacterial species (Curry et al., 2022). Indeed, the F-scores (Almeida et al., 2018) 89 

calculated from the precision and recall were best in the Emu workflow compared with those of 90 

QIIME2 and EPI2ME at the genus and species levels (Fig. 2).  91 

PCR primer selection for gene amplification contributes to varying results during 16S rRNA 92 

metabarcoding analyses (Park et al., 2021). Additionally, the primers used here (Oxford Nanopore 93 

Technologies) mismatched with particular bacterial 16S rRNA genes (Nanopore, 2016; Winand et 94 

al., 2019). Thus, PCR efficiency in the library preparation step before using each pipeline may affect 95 

correlation results, including abundance rank evaluation of the bacterial components. The existence 96 
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of multiple heterogeneous 16S rRNA copies within a genome can lead to experimental bias (Ibal et 97 

al., 2019). Therefore, we prepared samples with the cloned 16S rRNA of each bacterium to reduce 98 

PCR amplification bias and determine variations in taxonomic results among the three pipelines 99 

tested as another measure for comparative evaluation of closeness to the true value (Nagai et al., 100 

2022). Unification of the number of 16S rRNA gene copies enables evaluation of variations in the 101 

theoretical value. The coefficients of variation, the ratio of the standard deviation to the mean, for 102 

the existence ratio using QIIME2, Emu, and EPI2ME were 44.6%, 37.1%, and 71.6%, respectively, 103 

at the genus level, and 178.5%, 37.1%, and 79.5%, respectively, at the species level. Emu proved 104 

superior in terms of reflecting relative bacterial abundance. These observations also suggest that a 105 

mock sample with the same copy number of 16S rRNA gene, alongside DNA concentration, might 106 

provide precise quality control of the metabarcoding analysis workflow without bias stemming from 107 

multiple gene copies. 108 

A study limitation was the use of only mock samples with pure bacterial DNA. Clinical and 109 

environmental samples typically contain an assortment of bacterial species (Castellarin et al., 2012; 110 

Pantha et al., 2021; Scher et al., 2013). Some primers used for metabarcoding analysis reportedly 111 

amplify off-target sequences derived from human DNA (Walker et al., 2020). In future microbial 112 

diversity studies, performance evaluation of pipelines and effects of artifacts should include clinical 113 

and environmental samples.  114 

In conclusion, the Nanopore long-read pipeline Emu enabled accurate species-level allocation 115 

and abundance representation during 16S rRNA metabarcoding with the lowest variation in mock 116 

microbial communities compared to short-read-based QIIME2 and long-read-based EPI2ME 117 

workflows. For quality management of metabarcoding analytical workflows, this study suggests the 118 

use of plasmid DNA mock sample with equal 16S rRNA gene copy numbers. Our findings emphasize 119 
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the importance of appropriate data processing and evaluation for taxonomic investigations in 120 

representing actual microbiome profiles. 121 
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 231 

Fig. 1. Relative abundance of each bacterial taxon measured using each tested pipeline in the 232 

commercial (A: genus level, B: species level) and in-house (C: genus level, D: species level) 233 

samples, with the distribution of the identified taxa (IT) and unclassified (UC) and misclassified 234 

(MC) reads obtained from each pipeline. 235 
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236 

Fig. 2. Comparison of precision, recall, and F-score of each tested pipeline in the commercial (A: 237 

genus level, B: species level) and in-house (C: genus level, D: species level) samples.  238 
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 239 

Supplementary Fig. 1. Evaluation of sequence length distribution using FastQC. Short paired-240 

end reads of the commercial sample (A, B), short paired-end reads of the in-house sample (C, D), 241 

long reads of the commercial sample (E), and long reads of the in-house sample (F). 242 
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E F


