

Risk assessment of wild fish as environmental sources of red sea bream iridovirus (RSIV) outbreaks in aquaculture

メタデータ	言語: English
	出版者:
	公開日: 2024-04-17
	キーワード (Ja):
	キーワード (En):
	作成者: 河東, 康彦, 水野, かおり, 原川, 翔伍, 髙田, 優三,
	吉原, 勇作, 川上, 秀昌, 伊東, 尚史
	メールアドレス:
	所属: 水産研究・教育機構, 愛媛県農林水産研究所,
	愛媛県農林水産研究所, 水産研究・教育機構,
	愛南町水産課, 愛媛県農林水産研究所,
	水産研究・教育機構
URL	https://fra.repo.nii.ac.jp/records/2002150

1	Assessing the risk of wild fish around aquaculture environment as a source of red sea
2	bream iridovirus (RSIV) outbreak
3	
4	Yasuhiko Kawato ^{1,*} , Kaori Mizuno ² , Shogo Harakawa ² , Yuzo Takada ¹ , Yusaku Yoshihara ³ ,
5	Hidemasa Kawakami ² , Takafumi Ito ¹
6	¹ Pathology Division, Nansei Field Station, Fisheries Technology Institute, Japan Fisheries
7	Research and Education Agency, Mie 519-0193, Japan
8	² Ehime Fisheries Research Center, Ehime 798-0087, Japan
9	³ Ainan Town Fisheries Division, Ehime 798-4292, Japan
10	
11	
12	Running Head: Assessing RSIV risk in wild fish
13	
14	* Address correspondence to Yasuhiko Kawato, kawato_yasuhiko86@fra.go.jp
15	

16 ABSTRACT

17 Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish in an aquaculture environment was surveyed to 18 19 evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from two aquaculture areas 20 in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. 21 22 Eleven fish from seven species were confirmed to harbor the RSIV genome using a probebased real-time PCR assay. The mean viral load of the RSIV-positive wild fish was $10^{1.1 \pm 0.4}$ 23 copies/mg DNA, which was significantly lower than that of seemingly healthy red sea 24 bream (*Pagrus major*) in a net pen during an RSIV outbreak ($10^{3.3 \pm 1.5}$ copies/mg DNA) 25 that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein 26 27 gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area where the wild fish was captured. 28 Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish 29 appeared during RSIV outbreak or after the ceasing of the disease in cultured fish, 30 suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured 31 32 fish. Therefore, wild fish populations around aquaculture environments may not be a

33 significant risk factor for RSIV outbreaks in cultured fish.

35 Keywords: red sea bream iridovirus, RSIV, *Megalocytivirus*, wild fish, *Pagrus major*

39 **1. INTRODUCTION**

40 Red sea bream iridovirus (RSIV), a lethal pathogen in various fish species, belongs to the genus Megalocytivirus in the family Iridoviridae (Jancovich et al. 2012). The virus has a 41 42 double-stranded DNA genome approximately 110 kbp in length. The viral particles are 160-43 180 nm in diameter and include an envelope-like structure around the icosahedral virion capsid (Kurita & Nakajima 2012; Kawato et al. 2020). Megalocytiviruses have been divided 44 45 into two species by the International Committee on Taxonomy of Viruses (ICTV): infectious spleen and kidney necrosis virus (ISKNV), to which RSIV belongs, and scale drop disease 46 47 virus (SDDV), which has recently been registered as a new species in the genus (Chinchar et al. 2017). Based on phylogenetic analysis of the major capsid protein (MCP) and ATPase 48 genes, ISKNV species can be mainly classified into three genogroups, each with two clades: 49 50 the RSIV genogroup originating from marine fish, the ISKNV genogroup originating from both marine and freshwater fish, and the turbot reddish body iridovirus (TRBIV) genogroup, 51 which is mainly reported in marine flatfish (Kurita & Nakajima 2012, Go et al. 2016, Koda 52 et al. 2018). 53

RSIV was first reported in Japan in 1990 in cultured red sea bream (*Pagrus major*), from
which the viral name was derived (Inouye et al. 1992). The affected fish show signs of

56	lethargy, have pale gills and an enlarged spleen, and numerous enlarged cells are observed in
57	the visceral organs, such as the spleen, heart, and kidney (Inouye et al. 1992). The viral
58	infection has caused significant economic damage to more than 30 mariculture fish species
59	every summer season in Japan for more than 30 years (Matsuoka et al. 1996; Kawakami &
60	Nakajima, 2002). After the emergence of RSIV in Japan, similar viral infections caused by
61	megalocytiviruses have been reported in Asian countries (He et al. 2000; He et al. 2001; Jung
62	& Oh, 2000; Do et al. 2004; Shi et al. 2004; Shi et al. 2010). Furthermore, the geographical
63	distribution of megalocytiviruses has spread to Europe, the Americas, and Africa since the
64	2010s in both aquaculture fish for human consumption (Subramaniam et al. 2016; Lopez-
65	Porras et al., 2018; Ramírez-Paredes 2020; Figueiredo et al. 2022) and ornamental fish (Jung-
66	Schroers et al. 2016; Bermúdez et al. 2018). Because of its significant impact on the
67	aquaculture industry, RSIV infection caused by the ISKNV species has been designated as a
68	notifiable disease by the World Organization for Animal Health (WOAH, 2023).
69	Seasonal infection cycles and viral carriers during off-season RSIV outbreaks in aquaculture
70	environments remain unclear. Since the viral infection in Japan routinely occurs every
71	summer season and ceases in winter, there could be potential virus carriers or vectors in
72	aquaculture environments, such as surviving fish (Ito et al. 2013, Ito et al. 2014), latently

73	infected fish in which viral replication is suppressed at lower temperatures (Jun et al. 2009,
74	Oh et al. 2014), wild fish (Wang et al. 2007), and bivalves near fish farms (Jin et al. 2014).
75	Recently, we suggested that asymptomatically infected broodstock could be an infection
76	source for an outbreak event on a fish farm (Kawato et al. 2021).
77	Assessing the risk of environmental water (seawater) and wild fish for RSIV outbreak are
78	required to implement appropriate biosecurity measures in fish farms as seawater and wild
79	fish can move freely among net pens in the mariculture system. Our latest research has shown
80	that the seawater contributes less than expected to the transmission of RSIV among fish farms
81	because the transmission via seawater was highly associated with the distance between the
82	net pens (Kawato et al. 2023). Therefore, in this study, we assessed the wild fish around
83	aquaculture environment as a potential risk of RSIV outbreaks in fish farms. We surveyed
84	wild fish in two fish farming areas where RSIV outbreaks have routinely occurred between
85	2019 and 2022. The risk of wild fish for RSIV outbreak is discussed based on the results of
86	surveillance accompanied by the status of the RSIV epidemic in the area where the wild fish
87	were captured.

2. MATERIALS AND METHODS

90 2.1 Fish samples

91 Wild fish were collected from two bay areas (A and B) located in western Japan, where more than one million cultured fish, such as red sea bream and Japanese amberjack (Seriola 92 93 quinqueradiata), were reared (Fig. 1). A total of 1,102 fish were captured using fishing, gill nets, and fishing baskets between 2019 and 2021 in area A, and between 2020 and 2022 in 94 area B. Wild fish samples consisted of 8 orders, 29 families, and 44 species (Table 1). For 95 96 comparison with cultured fish, 8 dead and 30 seemingly healthy fish were collected from a red sea bream fish farm located in area B during the RSIV outbreak in 2021. Fish samples 97 were kept on ice in a vessel, and spleens were collected on the same day. The spleen 98 samples were stored at -80°C until DNA extraction. 99 100 101 2.2 Epidemiological information on RSIV disease 102 Information on RSIV epidemics in each area was obtained from diagnostic records inspected by two diagnostic laboratories for fish diseases managed by local authorities. 103 RSIV infection of each case was confirmed by observation of enlarged cells which is a 104 typical sign of RSIV-infected fish using stamp smear of spleen or kidney by Giemsa stain 105 106 (Inouye et al. 1992). In areas A and B, the diagnostic records were summarized by the

107	number of fish farms and individual net pens, respectively, owing to differences in the
108	recording systems of the diagnostic laboratories. There were huge outbreaks of RSIV in
109	2021 in areas A and B because most fish farms introduced RSIV-infected juveniles.
110	
111	2.3 DNA extraction and real-time PCR
112	Total DNA was extracted from spleen samples using the QIAamp DNA Mini Kit (QIAGEN
113	K.K., Tokyo, Japan) according to the manufacturer's instructions. The extracted DNA was
114	examined using a real-time PCR targeting the MCP gene of RSIV (Kawato et al. 2021)
115	using the RSIV-MCP186F (5'-CGG CCA GGA GTT TAG TGT GAC T-3') and RSIV-
116	MCP288R primers (5'-GCT GTT CTC CTT GCT GGA CG-3') and the RSIV-MCP239P
117	probe (5'-FAM-TGT GGC TGC GTG TTA AGA TCC CCT CCA-BHQ1-3').
118	Briefly, 20 μL of the reaction mixture, consisting of 2 μL of the DNA template, 10 μL of
119	THUNDERBIRD Probe qPCR Mix (TOYOBO Co., Ltd., Osaka, Japan), and a final
120	concentration of 200 nM for each primer and probe, was added to each well. For copy
121	number calculation, a serial 10-fold dilution of a plasmid (pGEM-Easy vector; Promega
122	Corporation, Madison, WI, USA) containing the target region of real-time PCR was used to
123	draw a standard curve. Real-time PCR was performed using a LightCycler 96 Instrument

124	(Roche Diagnostics K.K., Tokyo, Japan) or CFX96 Touch Real-Time PCR Detection
125	System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The amplification thermal
126	profile consisted of preincubation at 95°C for 1 min followed by 45 cycles of denaturation
127	and annealing, which were conducted at 95°C for 10 s and 60°C for 30 s, respectively. The
128	samples were tested in duplicate.
129	
130	2.4 Sequencing analysis
131	A partial region of the MCP gene of RSIV from wild and cultured fish (dead and seemingly
132	healthy) from the net pen during the RSIV outbreak was sequenced. PCR primers, RSIV
133	MCP-216F (5'-GGG TGG CGA CTA CCT CAT TA -3') and RSIV MCP-793R (5'-CAA
134	TGA GCA TGC TAC GGC TA-3') were used for the 1 st PCR to amplify the partial region
135	of the MCP gene (578 bp). PCR amplification was performed using KOD One PCR Master
136	Mix -Blue- (TOYOBO Co., Ltd., Osaka, Japan). The amplification thermal profile
137	consisted of 45 cycles of denaturation at 94°C for 10 s, annealing at 55°C for 30 s, and
138	extension at 68°C for 30 s. Then, a nested PCR was performed using the amplicon of the 1 st
139	PCR, which was diluted 100 times with distilled water. PCR primers for the nested PCR
140	were RSIV MCP-251F (5'-TTA AGA TCC CCT CCA TCA CG-3') and RSIV MCP-764R

141	(5'-ACA ACC TCA CGC TCC TCA CT -3'). The amplification thermal profile consisted of
142	one denaturation cycle of 35 cycles of denaturation at 98°C for 10 s, annealing at 55°C for
143	5 s, and extension at 68°C for 1 s. The 514 bp amplicon was purified using Illustra
144	ExoProStar (Global Life Sciences Technologies Japan K.K., Tokyo, Japan) and directly
145	sequenced using a DNA sequencing service (Fasmac Co., Ltd., Kanagawa, Japan). The
146	nucleotide sequences, except for the primer region of the partial MCP gene (474 bp), were
147	submitted to the DNA Data Bank of Japan (DDBJ) under accession number LC779498-
148	LC779503. Phylogenetic tree analysis was performed with the partial MCP nucleotide
149	sequences obtained from wild and cultured fish (dead and seemingly healthy) during the
150	outbreak, and 17 megalocytiviruses collected from the NCBI GenBank database. The MCP
151	sequence of scale drop disease virus (SDDV) was selected as an outgroup. The
152	phylogenetic tree was constructed using Molecular Evolutionary Genetics Analysis
153	(MEGA) version 10.2.6 (Kumar et al. 2018) using the neighbor-joining method with default
154	parameters and 1000 bootstrap replicates.
155	

156 2.5 Statistical analysis

157	For the copy number of RSIV genome among dead fish, asymptomatic infected fish, and
158	wild fish, assumptions of the normality and variances were tested first using Shapiro-Wilk
159	test and Bartlett test, respectively. Because the normality was confirmed but the variances
160	were not homogeneous, the data sets were analyzed by nonparametric test using Welch's
161	one-way ANOVA followed by pairwise Welch's T-test with the Bonferroni correction as the
162	post hoc test. The detection rate of the RSIV genome between sampling areas or among
163	cultured and wild fish was analyzed using Fisher's exact test, and the p-value was adjusted
164	using the Bonferroni method. The mean days from the date of wild fish sampling to that of
165	first RSIV outbreak in each year was compared between area A and B using Welch's T-test.
166	Statistical significance was set at $P < 0.05$. The analyses were performed using R version
167	4.2.1 using packages "multcomp" and "RVAideMemoire."
168	
169	3. RESULTS
170	3.1 Detection of RSIV genome from wild fish around aquaculture environment
171	RSIV genome was detected in 11 wild fish from 7 species among 1102 wild fish consisting
172	of 8 orders, 29 families, and 44 species captured around two aquaculture environment
173	(Tables 1 and 2). The RSIV-detected species were limited in Perciformes fish although

174	there were 248 samples (22.5%) derived from non-Perciformes fish. The RSIV detection
175	frequencies in areas A (1.2%) and B (0.9%) were not significantly different (Table 1). Most
176	of RSIV-detected wild fish were confirmed in 2021 when huge outbreaks of RSIV were
177	reported due to introducing RSIV-infected juveniles as seedlings in many fish farms (Table
178	2, Fig 2). No RSIV-positive wild fish was confirmed in area A in 2020 when no RSIV
179	epidemic was recorded (Fig. 2A). On the other hand, RSIV was not detected from the wild
180	fish captured in area B in 2020 although RSIV outbreaks were confirmed (Fig. 2B). All the
181	RSIV-detected wild fish were confirmed after RSIV outbreak in cultured fish in both areas
182	where the wild fish were captured (Table 2, Fig. 2). The mean days between the date of
183	sampling and that of first RSIV outbreak in each year was 85.4 \pm 44.3 days and it was
184	not significantly different between area A (94.8 \pm 32.1 days) and B (74.0 \pm 57.6 days).
185	
186	3.2 Comparison between cultured fish and wild fish
187	The viral genome was detected in all dead fish and in 19 of 30 seemingly healthy fish
188	collected from cultured red sea bream during the RSIV outbreak. The detection frequencies
189	of RSIV among dead, seemingly healthy, and wild fish were 100%, 63.3%, and 1.0%,
190	respectively, and that of wild fish was significantly low. Although both RSIV-detected wild

191	fish and cultured fish had no clinical signs, the mean viral load in the wild fish $(10^{1.1\pm0.4}$
192	copies/mg DNA) was significantly lower than that of the seemingly healthy fish $(10^{3.5\pm1.6},$
193	copies/mg DNA) (Fig. 3).
194	The partial nucleotide sequences of the MCP gene, except for the primer region (474 bp)
195	detected from eight positive samples in the wild fish, were completely identical. Although
196	no PCR product was obtained using nested PCR in the three positive samples from
197	Japanese jack mackerel (Trachurus japonicus), a partial RSIV sequence was confirmed by
198	sequencing the real-time PCR amplicons. The nucleotide sequences detected in wild fish
199	were identical between dead and seemingly healthy fish during the RSIV outbreak (Fig. 4).
200	Phylogenetic tree analysis indicated that all nucleotide sequences detected in the wild fish
201	belonged to the RSIV genogroup Clade 2 (Fig. 4).
202	
203	4. DISCUSSION
204	The present study demonstrated the frequency and intensity of RSIV infection in wild fish
205	captured in an aquaculture environment using real-time PCR assay. Many wild fish have
206	been considered potential carriers of RSIV epidemics in fish farms because RSIV has a
207	broad host range for more than 30 species of marine fish (Matsuoka et al. 1996; Kawakami

208	& Nakajima 2002). Indeed, ISKNV, another genogroup of RSIV in the megalocytiviruses,
209	was detected in 9.1% ($n = 1118$) of wild fish using nested PCRs (Wang et al. 2007). In
210	contrast, the 1.0% (n = 1102) detection rate in wild fish observed in this study was
211	significantly lower than that in the previous study despite a similar sample size. RSIV-
212	positive wild fish were limited to seven species within Perciformes fish in this study,
213	whereas the ISKNV-positive wild fish are confirmed in 36 species across six orders by
214	Wang et al. (2007). Although the potential differences in the sensitivity and specificity of
215	the assays used in both studies should be considered, the detection frequency in wild fish
216	could vary according to geographical location and aquaculture conditions.
217	Many wild fish especially Perciformes fish could be potential susceptible species for RSIV.
218	Among RSIV-detected wild fish, 4 species (Trachurus japonicus, P. major, Girella
219	punctata, and Epinephelus awoara) are reported to be susceptible to RSIV (Matsuoka et al.
220	1996; Kawakami & Nakajima, 2002). On the other hand, to the best of our knowledge, the
221	other RSIV-detected wild fish (Evynnis tumifrons, Prionurus scalprum, and Sebastiscus
222	marmoratus) classified into Perciformes is the first confirmed case for RSIV infection.
223	Considering the extremely broad host range of RSIV (Kawato et al. 2017), it could be a
224	potential risk of RSIV outbreak to start aquaculture of new fish species especially

225 Perciformes fish.

226	The RSIV load in wild fish was extremely low, suggesting that RSIV transmission from
227	wild fish to cultured fish is rare. In the asymptomatically RSIV-infected fish during the
228	RSIV outbreak in the fish farm, a range of viral loads between $10^{1.1}$ and $10^{5.9}$ copies/mg
229	DNA was observed. A similar situation was observed in a challenge test when RSIV was
230	exposed to red sea bream at 10^6 copies/L continuously for 3 days, which mimics a field
231	outbreak (Kawato et al. 2023). In the challenge test, RSIV shedding into the rearing water
232	from infected fish was confirmed, which could be a source for expanding the disease in fish
233	farms. Therefore, the variation in viral load during the asymptomatic stage indicates the
234	progression of the RSIV outbreak in the population. In contrast, the viral load of the wild
235	fish did not exceed $10^{2.0}$ copies/mg DNA, suggesting that the RSIV infection did not
236	progress in the infected wild fish for individuals and populations, at least when the fish
237	were captured. Furthermore, the low viral load in wild fish indicates that few viruses could
238	be shed into environmental water from RSIV-infected wild fish. In addition, wild fish do
239	not have the opportunity to come into direct contact with cultured fish because they are
240	separated by a net pen. It is unlikely that RSIV-infected wild fish remain close to the net
241	pen of cultured fish and release a large number of viral particles to transmit the virus

242	because the wild fish can freely move among net pens in aquaculture environment. Indeed,
243	our previous study monitoring the RSIV load in seawater in aquaculture environments
244	demonstrated that there were only 7 samples exceeding $10^{4.0}$ copies/L of the RSIV load in
245	seawater among 308 seawater samples between 2019 and 2022. All the high viral load
246	samples in seawater were associated with RSIV outbreak in fish farms (Kawato et al.
247	2023). In addition, our infection model indicates that RSIV-contained seawater with less
248	than $10^{3.0}$ copies/L can be ignored as an infection source for RSIV outbreak. Thus, the
249	RSIV-infected wild fish which were low viral load and prevalence, and physically separated
250	by the cultured fish, was not considered to be the infection source for RSIV outbreak.
251	There could be infection sources for RSIV outbreak in fish farms other than RSIV-infected
252	wild fish. For example, the diseases are confirmed in 2020 in area B although no RSIV was
253	detected from the wild fish (Fig. 2). Our previous study suggests that asymptomatically
254	RSIV-infected broodstock could be the infection source for RSIV outbreak in aquaculture
255	environment as high viral load was detected from seawater at the net pen of seemingly
256	healthy broodstock of red sea bream followed by confirmation of RSIV outbreak in the
257	juveniles nearby the broodstock net pen in 10 days (Kawato et al. 2021). Similar situations
258	could be occurred in area B in 2020 because the cases were mainly confirmed in fish farms

259	where different fish ages were reared in a limited area. In contrast, RSIV outbreaks in 2021
260	in areas A and B have been confirmed to be due to introduction of RSIV-infected juveniles
261	possibly transmitted from the asymptomatically RSIV-infected broodstock (Kawato et al.
262	2023). Therefore, there is no evidence that the RSIV-infected wild fish was the source of
263	RSIV outbreak so far.
264	The RSIV detected in wild fish was presumed to have been derived from fish farms where
265	the RSIV outbreak occurred. The target region for sequencing analysis contained single-
266	nucleotide polymorphisms (SNPs) that could distinguish among several RSIV isolates
267	(unpublished data). For example, the SNPs suggested that the RSIV genome of the wild
268	fish in this study was different from that of RSIV RS-17 (accession no. LC605053) isolated
269	from red sea bream during an outbreak in a different prefecture in 2017 (Kawato et al.
270	2021) but was identical to that in the cultured red sea bream in area A in 2021. Furthermore,
271	the comparison with the diagnostic records of RSIV indicated that RSIV-infected wild fish
272	appeared during or after the outbreak. The mean days between the date of wild fish
273	sampling and that of first RSIV outbreak in cultured fish was not different between area A
274	and B suggesting that similar situation was occurred in both areas. It should also be noted
275	that wild fish did not harbor RSIV when no RSIV epidemics were confirmed in area A in

276	2020. These results suggest that RSIV was transmitted from the cultured fish to the wild
277	fish rather than the RSIV-infected wild fish was the source of the disease outbreak in fish
278	farms. Furthermore, the RSIV infection was hardly considered to be circulating among wild
279	fish as there were cohorts of wild fish that RSIV was not detected in 2020.
280	The limited risk of RSIV-infected wild fish transmitting RSIV to cultured fish suggests that
281	the transmission of RSIV between fish farms could be partly due to the movement of
282	equipment and humans associated with fish farms. Our previous study suggested that the
283	transmission of RSIV via environmental water is highly associated with the distance
284	between net pens; hence, environmental water is not always an infection source for the
285	transmission of RSIV between fish farms (Kawato et al. 2023). Another factor for
286	transmission between fish farms that cannot be controlled in semi-open aquaculture
287	systems is wild fish. However, our surveillance of wild fish suggests that RSIV-infected
288	wild fish contribute little to the transmission of RSIV to cultured fish. Therefore,
289	biosecurity management, such as the disinfection of equipment associated with fish farms,
290	could be effective, even in semi-open aquaculture systems, where wild fish and
291	environmental water can freely move. Further studies are needed to identify the
292	transmission routes of RSIV to fish farms.

CONFLICT OF INTEREST

296 The authors declare no conflicting interests.

298	ACKNOWLEDGEMENT
270	

299	This study was supported by the Regulatory Research Projects for Food Safety, Animal
300	Health, and Plant Protection (JPJ00867.19190702) funded by the Ministry of Agriculture,
301	Forestry, and Fisheries of Japan. A part of this research was supported by the Food Safety
302	and Consumer Affairs Bureau, the Ministry of Agriculture, Forestry, and Fisheries of Japan.
303	
304	References
305	Bermúdez R, Losada AP, de Azevedo AM, Guerra-Varela J, Pérez-Fernández D, Sánchez L,
306	Padrós F, Nowak B, Quiroga MI. (2018) First description of a natural infection with
307	spleen and kidney necrosis virus in zebrafish. J Fish Dis 41:1283–1294
308	Chinchar VG, Hick P, Ince IA, Jancovich JK, Marschang R, Qin Q, Subramaniam K,
309	Waltzek TB, Whittington R, Williams T, Zhang Q-Y, ICTV Report Consortium. (2017)

- 310 ICTV virus taxonomy profile: Iridoviridae. J Gen Virol 98:890–891
- 311 Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK,
- Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW. (2004) Complete
- 313 genomic DNA sequence of rock bream iridovirus. Virology 325:351–363
- 314 Figueiredo HCP, Tavares GC, Dorella FA, Rosa JCC, Marcelino SAC, Pierezan F, Pereira
- 315 FL (2022) First report of infectious spleen and kidney necrosis virus in Nile tilapia in
- 316 Brazil. Transbound Emerg Dis 69:3008–3015
- 317 Go J, Waltzek TB, Subramaniam K, Yun SC and others (2016) Detection of infectious
- spleen and kidney necrosis virus (ISKNV) and turbot reddish body iridovirus (TRBIV)
- from archival ornamental fish samples. Dis Aquat Org 122:105–123
- 320 He JG, Weng SP, Zeng K, Huang ZJ, Chan SM (2000) Systemic disease caused by an
- 321 iridovirus-like agent in cultured mandarinfish, Siniperca chuatsi (Basilewsky), in China. J
- 322 Fish Dis 23:219–222
- He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM (2001) Complete
- 324 genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus.
- 325 Virology 291:126–139
- Inouye K, Yamano K, Maeno Y, Nakajima K, Matsuoka M, Wada Y, Sorimachi M (1992)

328	Ito T, Yoshiura Y, Kamaishi T, Yoshida K, Nakajima K (2013) Prevalence of red sea bream
329	iridovirus among organs of Japanese amberjack (Seriola quinqueradiata) exposed to
330	cultured red sea bream iridovirus. J Gen Virol 94:2094–2101
331	Ito T, Kawato Y, Yoshiura Y, Kamaishi T, Yoshida K, Nakajima K (2014) Potential
332	infectivity of the virus re-isolated from surviving Japanese amberjack (Seriola
333	quinqueradiata) after experimental infection with red sea bream iridovirus. B Eur Assoc
334	Fish Pat 34:17–24
335	Jancovich JK, Chinchar VG, Hyatt A, Miyazaki T, Williams T, Zhang QY (2012)
336	Iridoviridae, p. 207–210. In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed),
337	Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses.
338	Academic Press, London.
339	Jin JW, Kim KI, Kim JK, Park NG, Jeong HD (2014) Dynamics of megalocytivirus
340	transmission between bivalve molluscs and rock bream Oplegnathus fasciatus.
341	Aquaculture 428–429:29–34
342	Jung SJ, Oh MJ (2000) Iridovirus-like infection associated with high mortalities of striped
343	beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the

Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathol 27:19-27

- 344 Korean peninsula. J Fish Dis 23:223–226
- 345 Jung-Schroers V, Adamek M, Wohlsein P, Wolter J, Wedekind H, Steinhagen D (2016) First
- outbreak of an infection with infectious spleen and kidney necrosis virus (ISKNV) in
- ornamental fish in Germany. Dis Aquat Org 119:239–244
- Jun LJ, Jeong JB, Kim JH, Nam JH, Shin KW, Kim JK, Kang JC, Jeong HD (2009)
- 349 Influence of temperature shifts on the onset and development of red sea bream iridoviral
- disease in rock bream *Oplegnathus fasciatus*. Dis Aquat Organ 84: 201–208
- 351 Kawakami H, Nakajima K (2002) Cultured fish species affected by red sea bream iridoviral
- disease from 1996 to 2000. Fish Pathol 37:45–47
- 353 Kawato Y, Mekata T, Inada M, Ito T (2021) Application of environmental DNA for
- monitoring red sea bream iridovirus at a fish farm. Microbiol Spectr 9:e0079621
- 355 Kawato Y, Mohr PG, Crane MSJ, Williams LM, Neave MJ, Cummins DM, Dearnley M,
- 356 Crameri S, Holmes C, Hoad J, Moody NJG (2020) Isolation and characterisation of an
- 357 ISKNV-genotype megalocytivirus from imported angelfish *Pterophyllum scalare*. Dis
- 358 Aquat Organ 140:129–141
- 359 Kawato Y, Subramaniam K, Nakajima K, Waltzek T, Whittington R (2017) Iridoviral
- 360 diseases: red sea bream iridovirus and white sturgeon iridovirus. In: Woo PTK, Cipriano

- 361 RC (eds) Fish viruses and bacteria: Pathobiology and Protection. CABI Publishing,
- 362 Wallingford, p 147–159
- 363 Kawato Y, Takada Y, Mizuno K, Harakawa S, Yoshihara Y, Nakagawa Y, Kurobe T,
- 364 Kawakami H, Ito T (2023) Assessing the transmission risk of red sea bream iridovirus
- 365 (RSIV) in environmental water: Insights from fish farms and experimental settings.
- 366 Microbiol Spectr 11:e0156723
- 367 Koda SA, Subramaniam K, Francis-Floyd R, Yanong RP, Frasca S Jr, Groff JM, Popov VL,
- 368 Fraser WA, Yan A, Mohan S, Waltzek TB (2018) Phylogenomic characterization of two
- 369 novel members of the genus *Megalocytivirus* from archived ornamental fish samples. Dis
- 370 Aquat Org 130:11–24
- 371 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary
- 372 Genetics Analysis across computing platforms. Mol Biol Evol 35:1547-1549
- 373 Kurita J, Nakajima K (2012) Megalocytiviruses. Viruses 4:521–538.
- 374 Lopez-Porras A, Morales JA, Alvarado G, Koda SA, Camus A, Subramaniam K, Waltzek
- TB, Soto E (2018) Red seabream iridovirus associated with cultured Florida pompano
- 376 *Trachinotus carolinus* mortality in Central America. Dis Aquat Org 130:109–115
- 377 Matsuoka S, Inouye K, Nakajima K (1996) Cultured fish species affected by red sea bream

- iridoviral disease from 1991 to 1995. Fish Pathol 31:233–234
- 379 Oh SY, Oh MJ, Nishizawa T (2014) Potential for a live red seabream iridovirus (RSIV)
- 380 vaccine in rock bream *Oplegnathus fasciatus* at a low rearing temperature. Vaccine.
- 381 32:363-368
- 382 Ramírez-Paredes JG, Paley RK, Hunt W, Feist SW, Stone DM, Field TR, Haydon DJ,
- Ziddah PA, Nkansa M, Guilder J, Gray J, Duodu S, Pecku EK, Awuni JA, Wallis TS,
- 384 Verner-Jeffreys DW (2021) First detection of infectious spleen and kidney necrosis virus
- 385 (ISKNV) associated with massive mortalities in farmed tilapia in Africa. Transbound
- 386 Emerg Dis 68:1550-1563
- 387 Shi CY, Wang YG, Yang SL, Huang J, Wang QY (2004) The first report of an iridovirus-
- 388 like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture
- 389 236:11-25
- 390 Shi CY, Jia KT, Yang B, Huang J (2010) Complete genome sequence of a Megalocytivirus
- 391 (family Iridoviridae) associated with turbot mortality in China. Virol J 7:159
- 392 Subramaniam K, Gotesman M, Smith CE, Steckler NK, Kelley KL, Groff JM, Waltzek TB
- 393 (2016) Megalocytivirus infection in cultured Nile tilapia Oreochromis niloticus. Dis Aquat
- 394 Organ 119:253–258

- 395 Wang YQ, Lu L, Weng SP, Huang JN, Chan SM, He JG (2007) Molecular epidemiology
- 396 and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like
- 397 (ISKNV-like) virus. Arch Virol 152:763–773
- 398 WOAH (World Organisation for Animal Health) (2023) Infection with red sea bream
- 399 iridovirus. In: Aquatic Animal Health Code.
- 400 https://www.woah.org/fileadmin/Home/eng/Health_standards/aahc/current/chapitre_rsbid.
- 401 pdf
- 402

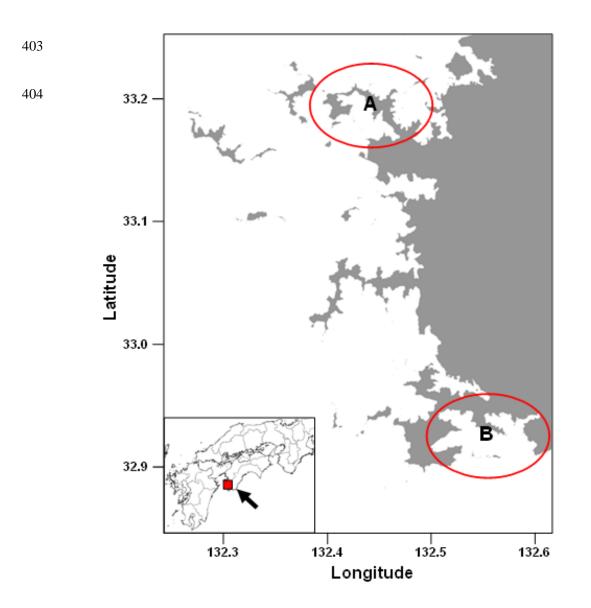


Fig. 1. Sampling area of wild fish. Fish were captured using fishing, gill net, and fishing basket between 2019 and 2022 in area A and B. The map was created by QGIS 3.34.3 using a GIS data obtained from Geospatial Information Authority of Japan. Red filled square with an arrow in wide-area map indicates the sampling area in Ehime prefecture in Japan.

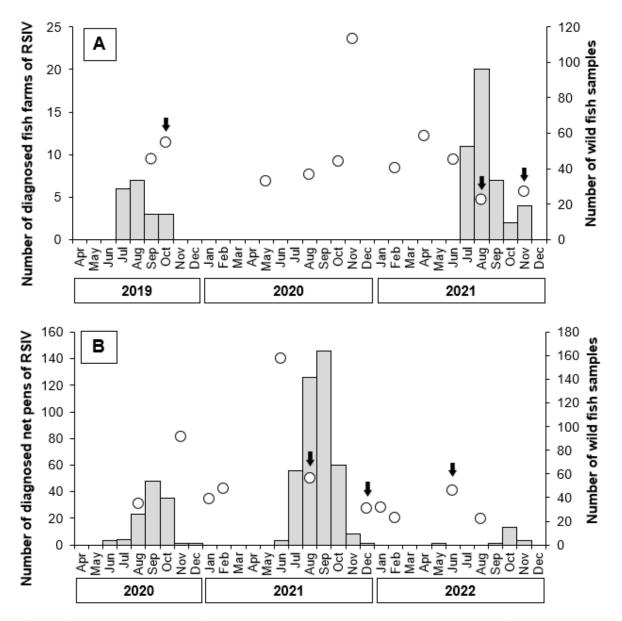
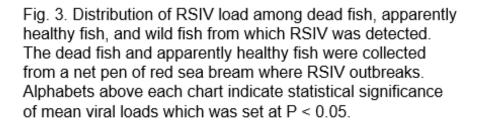
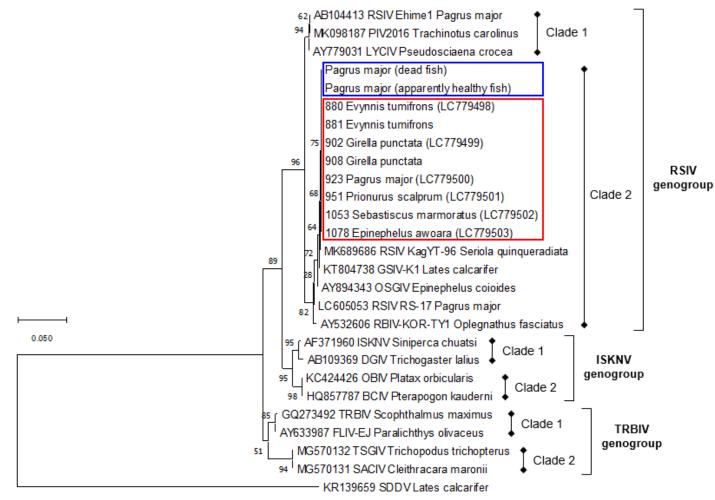
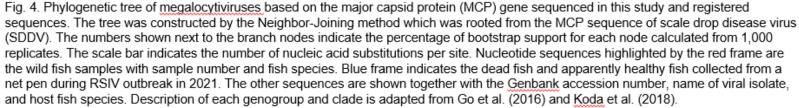





Fig. 2. Relationship between RSIV outbreak in cultured fish and appearance of RSIV-infected wild fish. Number of diagnosed cases of RSIV in cultured fish in the area A and B each year are shown by grey-filled histogram. White-filled circles indicate months when wild fish were captured and number of the wild fish sample. Black arrows indicate months when RSIV was detected from the wild fish.

408	Table 1. Surveillance of red sea bream iridoviru	s (RSIV) in wild fish around aqua	aculture environment
-----	--	---------	----------------------------	----------------------

Order	Family	Species	Positive fish/Examined fish			
			Area A	Area B	Total	
Anguilliformes	Muraenesocidae	Muraenesox cinereus	0/10	_*1	0/10	
Aulopiformes	Synodontidae	Saurida sp.	0/69	-	0/69	
Clupeiformes	Dussumieriidae	Etrumeus micropus	0/21	-	0/21	
	Engraulidae	Engraulis japonicus	0/1	-	0/1	
Lophiiformes	Lophiidae	Lophiomus setigerus	0/1	-	0/1	
Mugiliformes	Mugilidae	Mugil cephalus	0/1	-	0/1	
Perciformes	Acanthuridae	Prionurus scalprum	-	1/5	1/5	
	Apogonidae	Ostorhinchus semilineatus	0/1	0/12	0/13	
		Pristicon trimaculatus	0/1	-	0/1	
	Carangidae	Carangoides equula	0/3	0/25	0/28	
		Decapterus maruadsi	0/25	0/44	0/69	
		Seriola quinqueradiata	0/26	0/65	0/91	
		Trachurus japonicus	3/106	0/24	3/130	
	Chaetodontidae	Roa modesta	0/1	-	0/1	
	Haemulidae	Parapristipoma trilineatum	-	0/3	0/3	
		Plectorhinchus cinctus	-	0/3	0/3	
		Diagramma pictum	-	0/1	0/1	
	Kyphosidae	Oplegnathus punctatus	-	0/4	0/4	
		Oplegnathus fasciatus	-	0/9	0/9	
		Girella punctata	-	2/138	2/138	
	Labridae	Choerodon azurio	0/4	0/2	0/6	
		Pseudolabrus sieboldi	0/2	-	0/2	
	Latridae	Goniistius zonatus	-	0/1	0/1	
	Lethrinidae	Lethrinus haematopterus	-	0/3	0/3	
	Lutjanidae	Lutjanus kasmira	0/1	0/1	0/2	
	Mullidae	Parupeneus chrysopleuron	-	0/2	0/2	
		Upeneus japonicus	-	0/25	0/25	
	Nemipteridae	Parascolopsis eriomma	0/8	-	0/8	
	Pomacanthidae	Chaetodontoplus septentrionalis	0/2	-	0/2	
	Pomacentridae	Chromis notata	0/1	0/2	0/3	
	Pteroinae	Pterois lunulata	0/5	-	0/5	
	Scombridae	Scomber japonicus	0/2	-	0/2	
	Scorpaenidae	Sebastiscus marmoratus	0/10	1/40	1/50	
	Sebastidae	Sebastes sp.	0/1	-	0/1	

	Serranidae	Epinephelus awoara	-	1/2	1/2
		Epinephelus areolatus	-	0/8	0/8
Sparidae		Evynnis tumifrons	2/109	0/8	2/117
		Pagrus major	1/75	0/12	1/87
		Rhabdosargus sarba	-	0/31	0/31
Triglidae Le		Lepidotrigla microptera	0/1	-	0/1
Tetraodontiformes Monacanthidae		Aluterus monoceros	-	0/4	0/4
		Stephanolepis cirrhifer	0/30	0/98	0/128
		Thamnaconus modestus	0/1	0/11	0/12
Zeiformes	Zeidae	Zeus faber	0/1	-	0/1
	6/519 (1.2)	5/583 (0.9)	11/1102 (1.0)		

 $*_1$ -: no sample

Sample	Aree	Sampling	Days after	Captured	Species	BW	RSIV copies	Accession
No.	Area	date	outbreak*1	method	Species	(g)	/mg DNA	number*2
74	А	16-Oct-19	107	Fishing	Trachurus japonicus	111	2.8E+01	-
76	А	16-Oct-19	107	Fishing	Trachurus japonicus	140	4.6E+00	-
77	А	16-Oct-19	107	Fishing	Trachurus japonicus	130	2.1E+01	-
880	А	30-Aug-21	56	Gill net	Evynnis tumifrons	380	3.2E+00	LC779498.1
881	А	30-Aug-21	56	Gill net	Evynnis tumifrons	280	4.0E+00	-
923	А	18-Nov-21	136	Gill net	Pagrus major	100	1.1E+01	LC779500.1
902	В	31-Aug-21	74	Fishing	Girella punctata	840	1.7E+01	LC779499.1
908	В	31-Aug-21	74	Fishing	Girella punctata	440	6.3E+00	-
951	В	3-Dec-21	168	Fishing	Prionurus scalprum	500	1.2E+01	LC779501.1
1053	В	23-Jun-22	27	Fishing	Sebastiscus marmoratus	285	6.3E+01	LC779502.1
1078	В	23-Jun-22	27	Fishing	Epinephelus awoara	650	3.2E+01	LC779503.1

Table 2. Information of wild fish from which RSIV was detected.

*1 Days between the date of sampling and that of first RSIV outbreak in cultured fish in the area where the wild fish was captured in each year.

*² Partial sequence of the major capsid protein gene of RSIV determined by amplicon sequence of the nested PCR.