

Mass mortality events associated with cyprinid herpesvirus 2 (CyHV-2) infection in wild Prussian carp Carassius gibelio in the Netherlands, and molecular biology of virus strains

メタデータ	言語: English
	出版者:
	公開日: 2024-04-17
	キーワード (Ja):
	キーワード (En): CyHV-2; Prussian carp; cyprinid
	herpesvirus 2; goldfish; mass mortality events; natural
	waters
	作成者: 黒部, 智史, 栗田, 潤, Haenen, Olga,
	Voorbergen-Laarman, Michal, 伊東, 尚史
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2002151

DOI: 10.1111/jfd.13868

RESEARCH ARTICLE

Mass mortality events associated with cyprinid herpesvirus 2 (CyHV-2) infection in wild Prussian carp *Carassius gibelio* in the Netherlands, and molecular biology of virus strains

Tomofumi Kurobe¹ | Jun Kurita² | Olga Haenen³ | Michal Voorbergen-Laarman³ | Takafumi Ito¹

¹Pathology Division, Nansei Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minami-Ise, Mie, Japan

²Pathology Division, Tamaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan

³National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands

Correspondence

Takafumi Ito, Pathology Division, Nansei Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nakatsuhamaura 422-1, Minami-Ise, Mie 516-0193, Japan. Email: ito_takafumi99@fra.go.jp

Funding information Dutch Ministry of Agriculture, Nature and Food Quality; Japan Fisheries Research and Education Agency

Abstract

In 2011 and 2015, four mass mortalities of Prussian carp (*Carassius gibelio*) were observed in a recreational freshwater lake and open freshwater in the western part of the Netherlands. Cyprinid herpesvirus 2 (CyHV-2) infection was suspected in these cases, based on presumptive gross diagnosis. To elucidate the cause of the mass mortalities diagnostic PCR assays were performed for CyHV-2, based on the *helicase* gene. Furthermore, the viral isolates were genotyped by sequencing the enlarged marker A and marker B sequences. Diagnostic PCR revealed that three of four samples were positive for CyHV-2, indicating these three mass mortalities were associated with CyHV-2 infection. The marker A sequence from one of the isolates found in this study was identical to those from different locations such as Asia and Middle East, suggesting a link among the isolates. This is the first detailed report on mass mortalities of Prussian carp associated with CyHV-2 infection in natural aquatic environments in the Netherlands. Since 2015, additionally, in total three CyHV-2 associated outbreaks of Dutch Prussian carp were seen in 2016 and 2020. These outbreaks in Prussian carp from lakes and open water suggest that the virus has been spreading in natural freshwaters in the Netherlands.

KEYWORDS

CyHV-2, cyprinid herpesvirus 2, goldfish, mass mortality events, natural waters, Prussian carp

1 | INTRODUCTION

Cyprinid herpesvirus 2 (CyHV-2), a member in the family *Alloherpesviridae*, is the causative agent of herpesviral haematopoietic necrosis (HVHN) in goldfish (*Carassius auratus auratus*) and Prussian carp (*C. gibelio*) (Daněk et al., 2012; Jung & Miyazaki, 1995). CyHV-2 is highly transmissible and causes mass mortalities in goldfish and Prussian carp, and cumulative mortality rates of these two fish species may exceed 90% (Ito & Maeno, 2014; Daněk et al., 2012). Since CyHV-2 was first officially reported in Japan, cases associated with this viral infection have been observed all over the world (Thangaraj et al., 2021). The virus was detected not only from fish in aquaculture but also in fish from natural waters such as lakes and rivers, possibly due to illegal release of

goldfish infected with CyHV-2 into natural waters (Becker et al., 2014). Currently, most of CyHV-2 associated mortalities were reported from fish farms and data from natural environment are still limited.

In 2011 and 2015, mass mortalities of Prussian carp were experienced in the western part of the Netherlands. CyHV-2 infection was suspected in these cases based on presumptive gross diagnosis. To elucidate the cause of these mass mortalities, diagnostic PCR assays were performed based on the *helicase* gene of CyHV-2 (Waltzek et al., 2009). Furthermore, the viral isolates were genotyped by sequencing the enlarged marker A (mA) and marker B (mB) sequences (Boitard et al., 2016; Ito et al., 2017). In the Netherlands, in 2016 and 2020, a total of three CyHV-2 newer associated mass mortalities of Dutch Prussian carp were diagnosed (Wageningen Bioveterinary Research or WBVR, own findings). Strains of CyHV-2 from these cases were not studied in this paper, but their clinical pathology is reflected on in the discussion.

Fish Diseases

Journal of

IL EY

2 | MATERIALS AND METHODS

2.1 | Fish

When mass mortalities were observed in 2011 and 2015 in Prussian carp in a recreational freshwater lake and in open freshwater in the western part of the Netherlands, live, moribund or freshly dead Prussian carp were collected at these sites for diagnostics (Table 1). The Prussian carps were killed and were dissected for necropsy, including investigation for bacterial isolations and presence of ectoand endo-parasites. Tissue samples were taken from the gills and the internal organs (spleen, heart and kidney) for virus isolation, quantitative PCR (for diagnosis) and PCR (for genotyping).

2.2 | Diagnostic laboratory tests at WBVR

The organs were pooled per batch of fish and processed to a 10% (w/v) suspension. Virus isolation was performed on FHM- (fathead minnow) and EPC- (Epithelioma papulosum cyprini) cells (EURL, 2021). In parallel, pooled gills and kidneys from each case of specimens for qPCR/PCR were fixed in EtOH (96–99%), and genomic DNA was isolated using the Qiagen DNA/Tissue Mini-Kit (Qiagen, Hilden, Germany). The qPCRs for CyHV-3 (Gilad et al., 2004) and CyHV-2 (Goodwin et al., 2006) were, respectively, performed and analysed on ABI 7500 Fastsystems (Applied Biosystems, Massachusetts, United States). The inoculated agar plates for bacteriology were incubated during 7 days at 22°C.

2.3 | Polymerase chain reactions for genotyping CyHV-2 isolates at FRA

Conventional PCRs were performed for the *helicase* gene, mA and mB sequences (Ito et al., 2017). The reactions were performed

using primer sets for the helicase (CyHV2HeIF and CyHV2HeIR; Waltzek et al., 2009), mA (oPVP383 and oPVP382; Boitard et al., 2016) and mB sequence (oPVP384 and oPVP385; Boitard et al., 2016) as described by Ito et al. (2017). The reverse primer for mA sequence, oPCP382, originally developed by Boitard et al. (2016), did not amplify the target DNA fragment very well so that additional reactions were performed using a primer set, oPCP383 and oPVP383up3 (5'-TAAAATAAAAATGAATCAAA ACCAAC-3'), which amplifies the larger DNA fragment encompassing the mA target region (enlarged mA). All the amplified DNA fragments were sequenced. A commercially available software, Geneious Prime® ver. 2022.0.1, was used for cleaning up the sequencing results and calculating similarities of the gene sequences (Auckland, New Zealand).

2.4 | Phylogenetic analysis

A phylogenetic analysis was performed using the enlarged mA sequences obtained in this study along with others available in the NCBI GenBank database as described previously (Table 2; Soto et al., 2017). The *helicase* and mB sequences were not used for the sequence analysis because the sequences were nearly identical, and substitutions or insertions/deletions were rarely observed among the isolates.

3 | RESULTS

3.1 | Mass mortality events and clinical signs

During the four mass mortalities of Dutch wild Prussian carp in 2011 and 2015, high mortalities were recorded, (Haenen et al., 2016), whereby the water temperature in outbreaks 2–4 (positive for CyHV-2) varied from 20 to 25°C (Table 3). In the three positive cases of CyHV-2, their Ct values in the qPCR test of the 10^{-2} diluted organ suspensions were low (Ct ≤ 20), a sign of high amounts of the virus (Table 3).

Japan FRA ID	WBVR-NL ID	Sampling date	Location
NL-C.gibelio-1	11005487	March 25th, 2011	Wollebrand Recreational Lake, Honselersdijk, the Netherlands
NL-C.gibelio-2	11009701	May 26th, 2011	Open freshwater, Waddinxveen, the Netherlands
NL-C.gibelio-3	11015272	August 29th, 2011	Open freshwater, Polder de Noordplas, Zoetermeer, the Netherlands
NL-C.gibelio-4	15009145	June 9th, 2015	Wollebrand Recreational Lake, Honselersdijk, the Netherlands

Abbreviations: FRA: Japan Fisheries Research and Education Agency; WBVR-NL: Wageningen Bioveterinary Research in the Netherlands.

TABLE 1Prussian carp (Carassius
gibelio) mass mortalities in Dutch
freshwaters in the Netherlands.

TABLE 2 List of the CyHV-2 DNA sequences from Carassius species, used for phylogenetic analysis. Only the marker A sequence was used for the analysis since the helicase gene and marker B sequences were highly conserved among the isolates so that these sequences were not suitable for phylogenetic analysis.

B	Е ет а	L.											Journal of	sease		WILEY	3 of 7
	Reference	Davison et al. (2013)	lto et al. (2013)	Waltzek et al. (2009)	Zhang et al. (2014)	Li et al. (2015)	Zeng et al. (2016)	lto et al. (2017)	Panicz et al. (2019)	Wang et al. (2021)	Pan et al., unpublished	Lie et al., unpublished	Pan et al., unpublished	(Continues)			
	Fish species ^b	Goldfish	Goldfish	Goldfish	Prussian carp (Gibel carp)	Prussian carp (Gibel carp)	Crucian carp	Goldfish	Goldfish	Goldfish	Goldfish	Goldfish	Goldfish	Prussian carp (Gibel carp)	Prussian carp (Gibel carp)	Crucian carp	
	Year	1992	1999	1992-1993	2012	2012	2013	2014	2014	2015	2015	2016	2015	2011	2014	2015	
	Location	Japan	Japan	Japan	China	China	China	Singapore	Israel	Singapore	Israel	Poland	China	China	China	China	
	Helicase ^a	JQ815364.1 (126,318-126,683)	LC202016.1 (1-366)	EU349287.1 (665-1030)	KC245087.1 (665-1030)	KM200722.1 (125,605-125,970)	KU199244.1 (147,438-147,803)	LC202017.1 (1-366)	LC202019.1 (1-366)	LC202018.1 (1-366)	LC202020.1 (1-132)	Not available	MK260012.1 (125,211-125,576)	JQ067603.1 (332-697)	KT387800.1 (126,128-126,493)	MN201961.1 (125,379-125,744)	
	Marker B ^a	JQ815364.1 (213,940-214,414)	LC202026.1 (1-475)	Not available	Not available	KM200722.1 (213064-213,538)	KU199244.1 (235,035-235,509)	LC202027.1 (1-475)	Not available	LC202028.1 (1-473)	LC202029.1 (1-474)	Not available	MK260012.1 (212,742-213,215)	Not available	KT387800.1 (213,721-214,195)	MN201961.1 (212,869-213,342)	
	Marker A ^a	JQ815364.1 (7064-7593)	LC202021.1 (1-560)	Not available	Not available	KM200722.1 (7002-7457)	KU199244.1 (28,409-28,851)	LC202022.1 (1-560)	LC202025.1 (1-462)	LC202023.1 (1-569)	LC202024.1 (1-395)	KX852452.1 (3-297)	L: MK260012.1 (6580-6972) R: MK260012.1 (280,232-280,624)	Not available	L: KT387800.1 (7110-7552) R: KT387800.1 (282,212-282,654)	L: MN201961.1 (6987-7379) R: MN201961.1 (280,501-280,893)	
	Strain/isolate	ST-J1	SaT-1	H. Fukuda	JS2012	SY-C1	1310 ^c	AMS-1	AMS-3	AMS-6	AMS-8	RSD-PL	YZ-01 ^d	YC110907	SYd	CNDF-TB2015 ^d	

(Continues)

(Continued)
2
щ
В
TA

4 of 7

of	7	WILEY	Jourr Fisl	nal of h Dise	ases 🛹
	Reference	This study	This study	This study	me sequence was included in
	Fish species ^b	Prussian carp	Prussian carp	Prussian carp	with CyHV-2, the viral geno
	Year	2011	2011	2015	uence similarity
	Location	Netherlands	Netherlands	Netherlands	vell defined. -2. However, due to its sequ
	Helicase ^a	OR123883 (1-318)	OR123884 (1-318)	OR123885 (1-318)	d for the analyses. identification of crucian carp is not w esvirus (CaHV), different from CyHV
	Marker B ^a	OR123890 (1-429)	OR123891 (1-429)	OR123892 (1-429)	the sequences use st as the taxonomic rassius auratus herp
	Marker A ^a	OR123886 (long) (1-631) OR123887 (short) (1-488)	OR123888 (1-514)	OR123889 (1-471)	on numbers and regions of les are not shown in the li brted as a Crucian carp <i>Ca</i>
	Strain/isolate	NL-C.gibelio-2	NL-C.gibelio-3	NL-C.gibelio-4	^a GenBank accessic ^o The scientific narr ^c The virus was repr

The virus was reported as a Crucian carp Carassius auratus herpesvirus (CaHV), different from CyHV-2. However, due to its sequence similarity with CyHV-2, the viral genome sequence was included in this study.

^dThe mA sequence can be found in left (L) and right (R) arm, respectively, of the CyHV-2 whole genome sequences.

Japan FRA ID	Mortality length of fish	Year month	Ahnormalities as recorded hv clinical sizes (C). necronsv (N). narasitoloov (P) and hacterioloov (B)	Virology v.i.ª; qPCR KHV; qPCR CvHV-2. (Ct value CvHV-2) ^b
NL-C.gibelio-1	High, 32 cm	2011, 3	C&N: Surfacing, light exophthalmos with blindness, rough and haemorrhagic skin and fins, congested firm ovary. P: No records on dead fish. B: Some multi-bacterial growth on agar.	Neg; Neg; Neg (No Ct)
NL-C.gibelio-2	>2500 fish, 36 cm	2011, 5	C&N: Red skin and fins (fine haemorrhages), some small skin lesions. Congested spleen, haemorrhagic muscle, clear ascites, red anus. P: Externally many <i>Dactylogyrus</i> & Gyrodactylus, Argulus and ciliates (<i>Trichodina, Chilodonella</i>). B: Some multi-bacterial growth on agar.	Neg; Neg; Pos (Ct=15)
NL-C.gibelio-3	High, 25-35 cm	2011, 8	C&N: Red skin and fins (fine haemorrhages), haemorrhages in eyes, dull and easy loosening skin, gills pale with congested lamellae and hyperplastic epithelium, pale liver, petechial haemorrhages in swim bladder and muscle, red intestine, viscera, and ovary. P: Externally many Dactylogyrus & Gyrodactylus. B: Low, multi-bacterial growth on agar.	Neg; Neg; Pos (Ct=18)
NL-C.gibelio-4	>1400kg, 15-40 cm	2015, 6	C: White mucus layer over the eyes, whole fish red of haemorrhages. N: not done. P & B: not tested.	Neg; Neg; Pos (Ct=20)
Abbreviations: FRA: J. Virus isolation.	apan Fisheries Research and I	Education Agen	cy; WBVR-NL: Wageningen Bioveterinary Research in the Netherlands.	

13652761, 2024, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd13868 by Cochrane Lapan, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/jfd1386

 $^{\rm b}{\rm ln}$ the 10^{-2} dilution of the fish organ suspension.

3.2 | PCR and sequencing reactions for genotyping CyHV-2 isolates

For the helicase and mB sequence of CyHV-2, DNA bands were amplified at the expected target sizes in the NL-C.gibelio 2 through 4, however, such DNA bands were not observed in the NL-C.gibelio 1 (Figure 1a,d). The DNA sequences of helicase and mB amplified in the NL-C.gibelio two through four were almost identical to those of the reference strain, SaT-1 (BLASTN search results: ≥99.7%).

Similar to the helicase and mB sequence, DNA bands were observed at the expected size for the enlarged mA sequence (Figure 1b,c). Notably, an extra band was amplified in the NL-C. gibelio 2 for the mA and enlarged mA (Figure 1b,c). For the enlarged mA sequence, both of the DNA fragments amplified in the NL- C.gibelio 2 (560 and 677 bp, Figure 1c) showed a high similarity to the mA sequence of the reference strain, but deletions of repeats were observed in the shorter DNA fragment (Figure 2, Supplemental Information 2–4).

4 | DISCUSSION

Haenen et al. (2016) reported the first mass mortalities of Prussian carp associated with CyHV-2 infection in natural freshwaters in the Netherlands in 2011, and subsequently in 2015, and then did not describe details. Such mortality events in Prussian carp from a recreational freshwater lake and open freshwater suggest that the virus has spread in the natural waters in this country. The susceptible species, Prussian carp has been found all over the Netherlands (Schiphouwer et al., 2014), so, the virus might be more spread than only in the Mid-Western part of this country. This was already partly confirmed, given the fact, that since 2015 three more mass mortalities of Prussian carp were diagnosed in the Netherlands, caused by CyHV-2: apart from one in 2016 in the Mid-West part (Ct non-diluted: 12), two subsequent CyHV-2 related mortalities were diagnosed in 2020 in one water area, in the North-Western part (WBVR, own findings) (Ct values non-diluted: 12, and 14, respectively). It is expected that more outbreaks will follow, also, because *C. gibelio* is present in all regions of the Netherlands (Schiphouwer et al., 2014).

Journal of

Fish Diseases

Comparison of the mA sequences provided insight into the link of the CyHV-2 isolates. The mA sequence of NL-C.gibelio-3 is identical to those of AMS-1, -3, and SaT1 isolates (Figure 2, Supplemental Information 2). Among these isolates, AMS-1 and -3 were found in goldfish imported from Singapore and Israel, respectively, into the Netherlands in 2014 (Ito et al., 2017). In contrast, SaT1 was isolated from diseased Calico Goldfish in Japan over 20 years ago (Ito et al., 2013). The NL-C.gibelio-3 was detected from Prussian carp in the natural environment in the Netherlands (this study). Regardless of the locations and years of sampling, those CyHV-2 isolates share the identical mA sequence,

FIGURE 1 Conventional PCR on CyHV-2 isolates from Prussian carp (C. *gibelio*) from the Netherlands. M: molecular weight marker; P: positive control; N: negative control; 1: NL-C.gibelio 1; 2: NL-C.gibelio 2; NL-C. 3; NL-C.gibelio 3; 4: NL-C.gibelio 4.

5 of 7

WILEY

FIGURE 2 Phylogenetic tree for the enlarged marker A sequences from various CyHV-2 isolates from *Carassius* species from various geographic regions.

suggesting that these isolates are somehow related to each other. One possible explanation is that the CyHV-2 isolate found in Japan over 20 years ago spread to other countries in Asia and the Middle East, and later entered the Netherlands. In any case, measures implemented at quarantine facilities at airports and ports may not be sufficient to prevent introduction of CyHV-2. This is partly due to the nature of CyHV-2; fish naturally infected with CyHV-2 usually do not show prominent external signs (Ito et al., 2013; Jung & Miyazaki, 1995). Furthermore, CyHV-2 can establish a persistent or latent infection (Wei et al., 2023). Therefore, introducing live goldfish from global imports has a high-risk regarding spreading CyHV-2, subsequently causing mass mortality events associated with this viral infection.

AUTHOR CONTRIBUTIONS

Takafumi Ito: Conceptualization; investigation; funding acquisition; writing – original draft; writing – review and editing; project administration; supervision; data curation; resources; visualization. Tomofumi Kurobe: Writing – original draft; writing – review and editing; visualization; investigation; data curation; formal analysis; resources. Jun Kurita: Investigation; writing – review and editing; data curation; visualization; formal analysis; resources. Olga Haenen: Conceptualization; investigation; funding acquisition; writing – review and editing; project administration; supervision; data curation; writing – original draft; visualization; resources. Michal Voorbergen-Laarman: Investigation; writing – review and editing; data curation; visualization; resources.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Japan Fisheries Research and Education Agency. This research was also supported by the Dutch Ministry of Agriculture, Nature and Food Quality, project no. WBVR-1600002777. The authors thank Ineke Roozenburg and Betty van Gelderen of Wageningen Bioveterinary Research in the Netherlands for their technical assistance in the diagnostics.

FUNDING INFORMATION

All the funding sources provided to carry out the research are available in the section Acknowledgements.

CONFLICT OF INTEREST STATEMENT

Not applicable.

DATA AVAILABILITY STATEMENT

DNA sequence data are available in the GenBank Database (accession numbers: OR123883-OR123892). All the other data are within the paper and its supplemental information.

CLINICAL TRIAL REGISTRATION

Not applicable.

PATIENT CONSENT STATEMENT

Not applicable.

PERMISSION TO REPRODUCE MATERIAL FROM OTHER SOURCES

All the materials used in this paper are original. The DNA sequences used for phylogenetic analysis are freely available in a public database (GenBank Database, https://www.ncbi.nlm.nih. gov/genbank/) and those sequences are correctly cited in this paper.

ORCID

Olga Haenen ¹⁰ https://orcid.org/0000-0002-5569-9803 Takafumi Ito ¹⁰ https://orcid.org/0000-0001-6275-1131

REFERENCES

- Becker, J. A., Tweedie, A., Rimmer, A., Landos, M., Lintermans, M., & Whittington, R. J. (2014). Incursions of cyprinid herpesvirus 2 in goldfish populations in Australia despite quarantine practices. Aquaculture, 432, 53–59. https://doi.org/10.1016/j.aquac ulture.2014.04.020
- Boitard, P. M., Baud, M., Labrut, S., de Boisséson, C., Jamin, M., & Bigarré, L. (2016). First detection of cyprinid herpesvirus 2 (CyHV-2) in goldfish (*Carassius auratus*) in France. *Journal of Fish Diseases*, 39, 673– 680. https://doi.org/10.1111/jfd.12400
- Daněk, T., Kalous, L., Vesel, T., Krásová, E., Reschová, S., Rylková, K., Kulich, P., Petrt, L. M., Pokorová, D., & Knytl, M. (2012). Massive mortality of Prussian carp *Carassius gibelio* in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2). *Diseases of Aquatic Organisms*, 27, 87–95. https://doi.org/10.3354/ dao02535

- Davison, A. J., Kurobe, T., Gatherer, D., Cunningham, C., Korf, I., Fukuda, H., Hedrick, R. P., & Waltzek, T. B. (2013). Comparative genomics of carp herpesviruses. *Journal of Virology*, 87, 2908–2922. https://doi. org/10.1128/JVI.03206-12
- EURL. (2021). (EU Reference Laboratory) for Fish Diseases. Diagnostic methods and procedures for the surveillance and confirmation of infection with VHSV and IHNV v2021.2. file:///C:/Users/ haene002/Downloads/VHSV-and-IHNV-diagnostic-manual-v2021-2-2.pdf.
- Gilad, O., Yun, S., Zagmutt-Vergara, F. J., Leutenegger, C. M., Bercovier, H., & Hedrick, R. P. (2004). Concentrations of a koi herpesvirus (KHV) in tissues of experimentally infected *Cyprinus carpio* koi as assessed by real-time TaqMan PCR. *Diseases of Aquatic Organisms*, 60, 179–187. https://doi.org/10.3354/dao060179
- Goodwin, A. E., Merry, G. E., & Sadler, J. (2006). Detection of the herpesviral hematopoietic necrosis disease agent (cyprinid herpesvirus 2) in moribund and healthy goldfish: Validation of a quantitative PCR diagnostic method. *Diseases of Aquatic Organisms*, 69(2–3), 137– 143. https://doi.org/10.3354/dao069137
- Haenen, O., Way, K., Gorgoglione, B., Ito, T., Paley, R., & Waltzek TB, B.
 L. (2016). Novel viral infections threatening cyprinid fish. Bulletin of the European Association of Fish Pathologists, 36, 11.
- Ito, T., Kurita, J., & Haenen, O. L. M. (2017). Importation of CyHV-2-infected goldfish into The Netherlands. *Diseases of Aquatic Organisms*, 126, 51–62. https://doi.org/10.3354/dao03157
- Ito, T., Kurita, J., Ozaki, A., Sano, M., Fukuda, H., & Ototake, M. (2013). Growth of cyprinid herpesvirus 2 (CyHV-2) in cell culture and experimental infection of goldfish *Carassius auratus*. *Diseases* of Aquatic Organisms, 105, 193–202. https://doi.org/10.3354/ dao02627
- Ito, T., & Maeno, Y. (2014). Susceptibility of Japanese Cyprininae fish species to cyprinid herpesvirus 2 (CyHV-2). Veterinary Microbiology, 169, 128–134. https://doi.org/10.1016/j. vetmic.2014.01.002
- Jung, S. J., & Miyazaki, T. (1995). Herpesviral haematopoietic necrosis of goldfish, Carassius auratus (L). Journal of Fish Diseases, 18, 211–220. https://doi.org/10.1111/j.1365-2761.1995.tb00296.x
- Li, Lu, Luo, Y., Gao, Z., Huang, J., Zheng, X., Nie, H., Zhang, J., Lin, L., & Yuan, J. (2015). Molecular characterisation and prevalence of a new genotype of Cyprinid herpesvirus 2 in mainland China. *Canadian Journal of Microbiology*, *61*, 381–387. https://doi.org/10.1139/ cjm-2014-0796
- Panicz, R., Sadowski, J., & Eljasik, P. (2019). Detection of Cyprinid herpesvirus 2 (CyHV-2) in symptomatic ornamental types of goldfish (*Carassius auratus*) and asymptomatic common carp (*Cyprinus carpio*) reared in warm-water cage culture. *Aquaculture*, 504, 131– 138. https://doi.org/10.1016/j.aquaculture.2019.01.065
- Schiphouwer, M. E., van Kessel, N., Matthews, J., Leuven, R. S. E. W., van de Koppel, S., Kranenbarg, J., Haenen, O. L. M., Lenders, H. J. R., Nagelkerke, L. A. J., van der Velde, G., Crombaghs, B. H. J. M., & Zollinger, R. (2014). *Risk analysis of exotic fish species included*

in the Dutch Fisheries Act and their hybrids. Nederlands Expertise Centrum Exoten (NEC-E). https://repository.ubn.ru.nl/bitstream/ handle/2066/123477/123477.pdf?sequence=1

Journal of

Fish Diseases 🐢

7 of 7

-WILEY

- Soto, E., Richey, C., Stevens, B., Yun, S., Kenelty, K., Reichley, S., Griffin, M., Kurobe, T., & Camus, A. (2017). Co-infection of Acipenserid herpesvirus 2 (AciHV-2) and streptococcus iniae in cultured white sturgeon Acipenser transmontanus. *Diseases of Aquatic Organisms*, 124(1), 11–20. https://doi.org/10.3354/dao03108
- Thangaraj, R. S., Nithianantham, S. R., Dharmaratnam, A., Kumar, R., Pradhan, P. K., Gopakumar, S. T., & Sood, N. (2021). Cyprinid herpesvirus-2 (CyHV-2): A comprehensive review. *Reviews in Aquaculture*, 13, 796–821. https://doi.org/10.1111/raq.12499
- Waltzek, T. B., Kurobe, T., Goodwin, A. E., & Hedrick, R. P. (2009). Development of a polymerase chain reaction assay to detect cyprinid herpesvirus 2 in goldfish. *Journal of Aquatic Animal Health*, 21, 60–67. https://doi.org/10.1577/H08-045.1
- Wang, F., Xu, Y., Zhou, Y., Ding, C., & Duan, H. Isolation and characterization of a Cyprinid herpesvirus strain YZ01 from apparently healthy goldfish after rising water temperature. *bioRxiv*. 2021.07.05.451087 https://doi.org/10.1101/2021.07.05.451087
- Wei, C., Xu, C., Sun, Y., Li, J., Sano, M., & Li, Q. (2023). Investigation of the latency of cyprinid herpesvirus 2 in apparently healthy farmed gibel carp, *Carassius auratus gibelio*. *Aquaculture*, 562, 738854. https:// doi.org/10.1016/j.aquaculture.2022.738854
- Zeng, X. T., Chen, Z. Y., Deng, Y. S., Gui, J. F., & Zhang, Q. Y. (2016). Complete genome sequence and architecture of crucian carp *Carassius auratus* herpesvirus (CaHV). Archives of Virology, 161, 3577–3581. https://doi.org/10.1007/s00705-016-3037-y
- Zhang, H., Zeng, L., Fan, Y., Zhou, Y., Xu, J., & Ma, J. (2014). A loopmediated isothermal amplification assay for rapid detection of cyprinid herpesvirus 2 in gibel carp (*Carassius auratus* gibelio). The Scientific World Journal, 19, 716413. https://doi. org/10.1155/2014/716413

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Kurobe, T., Kurita, J., Haenen, O., Voorbergen-Laarman, M., & Ito, T. (2024). Mass mortality events associated with cyprinid herpesvirus 2 (CyHV-2) infection in wild Prussian carp *Carassius gibelio* in the Netherlands, and molecular biology of virus strains. *Journal of Fish Diseases*, 47, e13868. <u>https://doi.org/10.1111/jfd.13868</u>