

Optimal nitrogen source for the recovery of phycoerythrin in discolored Rhodomonas sp.

メタデータ	言語: English
	出版者:
	公開日: 2024-06-24
	キーワード (Ja):
	キーワード (En):
	作成者: 山本, 慧史, 徳田, 雅治
	メールアドレス:
	所属: 水産研究・教育機構, 水産研究・教育機構
URL	https://fra.repo.nii.ac.jp/records/2008492

1	Optimal nitrogen source for the recovery of phycoerythrin in discolored Rhodomonas
2	sp.
3	
4	Satoshi Yamamoto ^{a, b*} , Masaharu Tokuda ^a
5	
6	^a Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and
7	Education Agency, Minamiise, Mie 516-0193, Japan
8	^b Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku,
9	Tokyo 102-0083, Japan
10	
11	Abstract
12	Rhodomonas species are of interest as excellent aquaculture feed because of their ideal
13	biochemical composition, especially their high protein content, resulting from the
14	presence of intracellular phycoerythrin (PE). One of the most crucial issue with this
15	species as a feed source is PE degradation under ambient nitrogen starvation, which leads
16	to unpredictable growth defects and reduced nutritional value associated with cell

17	discoloration. The aim of this study was to propose an optimal nitrogen source for the
18	recovery of intracellular PE in discolored Rhodomonas sp. We supplied three different
19	nitrogen sources, i.e., nitrate, ammonium, and urea, to PE-degraded cells and monitored
20	changes in PE content and the expression of related genes. Supplementation with each
21	nitrogen source increased cell density, with nitrate exhibiting the highest specific growth
22	rate of $0.30 \pm 0.02 \text{ day}^{-1}$. The maximum PE content in each nitrogen group at 48 h after
23	N supplementation was about 3.8 pg cell ⁻¹ with no major difference between groups. In
24	contrast, the highest relative PE recovery rate of 5.73 \pm 0.18-fold and the highest PE
25	productivities of 0.32 \pm 0.01 µg mL ⁻¹ h ⁻¹ were obtained in the nitrate group. Nitrogen
26	transporter genes, including RhNrt2, RhAmt1, and RhDur3, were upregulated under
27	nitrogen-starvation conditions, demonstrating the ability of this species to utilize each of
28	the tested nitrogen sources. Furthermore, <i>RhCpeb</i> , which serves as a molecular indicator
29	of PE biosynthesis, was significantly upregulated in all nitrogen-supplemented groups,
30	with the strongest and fastest increase in expression in the nitrate group, emphasizing the
31	potential of nitrate as the most favorable nitrogen source for PE recovery in this species.

- 32 Our findings pave the way for informed strategies for the stable management and
- 33 production of *Rhodomonas* species as high-protein feed in aquaculture.

34 Keywords

- 35 Rhodomonas, nitrogen source, nitrogen starvation, nitrogen transporter, phycoerythrin,
- 36 gene expression

37 **1. Introduction**

38 Species of the cryptophyte genus *Rhodomonas*, such as *R. salina*, *R. baltica*, *R. reticulata*, 39 and R. lens, are excellent aquaculture feeds because of their ideal biochemical 40 compositions [1–3]. Many studies have been undertaken to optimize culture conditions 41 and enhance nutritional value [4-8]. Consequently, *Rhodomonas* species are now used as 42 feed for diverse marine animals, such as filter-feeder mollusks, crustaceans, and 43 zooplankton, as live prey [9–11]. 44 A notable aspect of the nutritional value of *Rhodomonas* species compared to other 45 microalgae is their exceptionally high protein content. Protein is an essential dietary 46 component, and *Rhodomonas* species are therefore commonly recognized as excellent 47 high-protein feeds for marine animals. For example, in a recent study by Coutinho et al. 48 [18], R. lens was described as a "Premium" microalgae for enriching rotifers due to its 49 high protein content. The high protein content in Rhodomonas species is mainly due to 50 the presence of phycoerythrin (PE), which has a bright red color and is the major 51 phycobiliprotein in this species, in the cells [12,13]. This phycobiliprotein acts as a 52 photosynthetic light-harvesting pigment that provides energy to photosystem II [14–16].

53	Consisting of an $\alpha 1 \alpha 2 \beta \beta$ heterodimeric protein-pigment complex with a molecular weight
54	of 24 kDa, PE represents over 20% of the intracellular protein content of cryptophytes
55	[14,17]. Therefore, increasing the intracellular PE content enhances the nutritional
56	benefits of <i>Rhodomonas</i> species as a feed, i.e. the protein content, and this characteristic
57	justifies research into improving the culture protocol for PE production in this species.
58	Our previous study found a correlation between protein and PE content in Rhodomonas
59	sp. (Hf-1 strain) and achieved an increase in protein content to more than 60% of the dry
60	weight through enhanced PE biosynthesis [19].
61	Despite the noted advantages of <i>Rhodomonas</i> species as feed, unresolved issues must be
62	addressed for its effective use. The most crucial of these are the unpredictable growth
63	defects and reduced nutritional value associated with cell discoloration. This phenomenon
64	in cryptophytes has been documented by several researchers since the 1970s and is known
65	to be due to intracellular PE degradation caused by ambient nitrogen (N) starvation
66	[17,20,21]. Da Silva et al. [17] reported that the PE content in <i>Rhodomonas</i> sp. reduced
67	by up to 90% under N starvation, inducing a rapid change in culture color from bright red
68	to yellow. Our previous study also showed that N starvation leads to a 75% reduction in

69	PE content in <i>Rhodomonas</i> sp., resulting in a reduced growth rate and nutritional value,
70	with a drastic change in cell color [19]. Lichtlé [20] speculated that phycobiliproteins are
71	biosynthesized as an internal N reserve under N-sufficient conditions, whereas under N
72	starvation, they are autolyzed and used as protein substrates to synthesize other proteins
73	essential for survival. Several studies support this hypothesis [17,21-23].
74	Some studies have focused on enhancing PE biosynthesis in Rhodomonas species by
75	applying environmental stimuli. For instance, Latsos et al. [24,25] reported the effects of
76	optimal light conditions, salinity, and pH on increasing the PE content in <i>Rhodomonas</i> sp.
77	Chaloub et al. [21] investigated the combined effect of irradiance, temperature, and nitrate
78	concentration on PE content in Rhodomonas sp. and proposed that PE biosynthesis was
79	enhanced under low light intensity at 26°C. However, considering the practical operation
80	of this species as a feed in aquaculture, more crucial information should be provided on
81	methodologies to recover discolored cells to a sound state rather than techniques to
82	produce excessive PE. This is because PE degradation occurs in many aquaculture
83	situations, including preservation, transport, and production, and its prediction remains

84 difficult. Lichtlé [20] reported that PE reappears when N deficiency is stopped; however,
85 further updates in this respect are limited in the literature.

86 The aim of this study was to propose an optimal N source for the recovery of PE from 87 discolored Rhodomonas sp. Although Rhodomonas species can utilize different forms of 88 N, including inorganic and organic N, for growth [26–28], few studies have investigated 89 their effects on PE biosynthesis. In this study, we supplied three different N sources, i.e., 90 nitrate, ammonium, and urea, to PE-degraded cells and monitored the changes in 91 intracellular PE content to assess the effect of their supplementation on PE recovery. The 92 uptake of each N source by Rhodomonas sp. was verified by expression analysis of N 93 transporters, including the nitrate transporter gene (*RhNrt2*), ammonium transporter gene 94 (RhAmt1) and urea transporter gene (RhDur3). In addition, the expression of the RhCpeb, 95 encoding the β -subunit of PE and identified in our previous report as a useful molecular 96 indicator of PE biosynthesis [29], was monitored to assess the PE biosynthetic activity 97 under different N sources. Our findings contribute to the stable management and 98 production of *Rhodomonas* species as high-protein feeds in aquaculture.

99 2. Materials and methods

100 2.1 Strain and experimental set-up

101 The *Rhodomonas* sp. used in this study has been described previously [19]. *Rhodomonas* 102 sp. was subcultured in Guillard 2F medium [30] more than three times prior to the 103 experiment. Cultures were maintained at 20°C under continuous (24L:0D) white light emitting diodes at 80 μ mol m⁻² s⁻¹ with a sufficient filtered airflow (0.2 μ m pore size) to 104 105 agitate the culture medium. 106 Batch culture experiments were conducted using three N sources, i.e., nitrate, ammonium, 107 and urea, to investigate the effects of different N sources on PE recovery. Starter cultures 108 were grown in 1,000 mL Erlenmeyer flasks containing Guillard 2F medium. After 3 days 109 of culture, the medium was replaced with N-free medium according to the following 110 procedure. Algal cells were collected by centrifugation at $1,000 \times g$ for 10 min, washed 111 with sterilized N-free seawater to remove residual N, and resuspended in N-free Guillard 112 2F medium (the absence of N was confirmed by the colorimetric method). After 2 days, 113 the cell suspension became discolored. Subsequently, NaNO₃, (NH₄)₂SO₄, and CH₄N₂O 114 (>99%, FUJIFILM Wako chemicals, Osaka, Japan) were separately supplied at a final N 115 concentration of 7.0 mM, mirroring Guillard 4F (nitrate, ammonium, and urea groups).

116 Medium without added N was used as a control. Cultures were maintained at 20°C under 117 continuous white light emitting diodes at 80 μ mol m⁻² s⁻¹ with a sufficient filtered airflow 118 (0.2 µm pore size). Three replicate flasks were prepared for each treatment group. The 119 algal cells were sampled every 12 h after N-source supplementation for cell counting, PE 120 measurements, and RNA extraction. 121 Another batch culture was prepared with N-sufficient (7 mM of either NaNO₃, (NH₄)₂SO₄, 122 or CH₄N₂O) and N-starved (0 mM of any N source) conditions to investigate the 123 expression of the N transporter genes RhNrt2, RhAmt1, and RhDur3 under different N 124 conditions. The culture conditions were the same as those described above. Algal cells in 125 the N-sufficient group were sampled 12 h after supplementation with each N source, 126 whereas those in the N-starved groups were sampled 72 h after subjecting the cells to N 127 starvation for 72 h to eliminate the effects of intracellular N metabolites. The cells were 128 used for RNA extraction.

- 129 2.2 Cell growth and PE measurements
- 130 The cells were counted by direct observation under an optical microscope (BX51,
- 131 Olympus, Tokyo, Japan) using a Neubauer counting chamber (ERMA, Tokyo, Japan).

132 The specific growth rates (μ , day⁻¹) were calculated from cell counts using the following

133 equation:

134
$$\mu = \frac{\ln \left(N_2 / N_1 \right)}{t_2 - t_1}$$

135 where N_1 and N_2 are the cell densities at times t_1 and t_2 , respectively, and t_1 and t_2 are the 136 initial and final measurements in the exponential growth phase, respectively. 137 PE extraction was performed by a modified method of our previous study [19]. 138 Microalgal pellets were obtained from 20 mL cell suspensions by centrifugation at 2,000 139 \times g for 10 min to determine the PE content per cell. Pellets immersed in 5 mL of phosphate 140 buffer (0.1 M, pH = 6) (FUJIFILM Wako chemicals) were stored at -35° C for 24 h to 141 disrupt cells, then at 5°C for 24 h to extract PE. The extracts were centrifuged at 12,000 142 \times g for 5 min to remove cell debris. The absorbance (A) of the resulting extracts was 143 measured at 455, 564, 592, and 750 nm using a spectrophotometer (UV-1800, Shimadzu 144 Biotech, Kyoto, Japan), with phosphate buffer as a blank. All absorbance values were scatter-corrected by subtracting the absorbance at 750 nm. PE content (pg cell⁻¹) was 145 146 calculated using the following equation: [31]

147
$$PE (pg cell^{-1})$$

148
$$= \{ [(A_{564} - A_{592}) - (A_{455} - A_{592}) \times 0.2] \times 0.12 \} \times V_{buffer}$$

149
$$\times$$
 cell density⁻¹ \times 10⁻⁹

150 where V_{buffer} is the buffer volume and *cell density* is the total number of cells in 20 mL of

151 the harvested cell suspension. The relative PE recovery rate (R_{PE}) was calculated based

152 on the PE contents using the following equation:

153
$$R_{PE} = \frac{PE_t}{PE_i}$$

154 where PE_t is the PE content at time t and PE_i is the initial PE content immediately before

155 each N source is supplemented. Finally, PE productivities (P_{PE} , µg mL⁻¹ h⁻¹) were

156 calculated using the following equation:

157
$$P_{PE}(\mu g \ mL^{-1} \ hour^{-1}) = \frac{PE_2 \times N_2 - PE_1 \times N_1}{t_2 - t_1}$$

158 where PE_1 and PE_2 are the PE contents and N_1 and N_2 are the cell densities at times t_1 and

159 *t*₂, respectively.

160 2.3 RNA extraction and cDNA synthesis

161 Algal cells were harvested by centrifugation at $12,000 \times g$ for 5 min from 2 mL samples,

162 and cell pellets were immediately frozen and stored at -80°C until RNA extraction. Total

163	RNA was extracted using NucleoSpin RNA Plant (Macherey-Nagel, Düren,
164	Germany) following the manufacturer's instructions. The RNA concentration and purity
165	were determined using a Biospec-Nano spectrophotometer (Shimadzu Biotech) at
166	260/280 nm (A ₂₆₀ /A ₂₈₀). cDNA synthesis was performed with 0.3 μ g of total RNA using
167	a PrimeScript II 1st strand cDNA Synthesis Kit (Takara Bio Inc., Shiga, Japan) with
168	random hexamer primers following the manufacturer's instructions. The synthesized
169	cDNA was used for expression analysis of <i>RhCpeb</i> and N transporter genes and of the
170	RhAmt1 and RhDur3 genes. The procedures and results for gene identification of RhAmt1
171	and RhDur3, including cloning and resequencing analyses, are provided in the
172	Supplementary file. The details of RhCpeb and RhNrt2 have been described in our
173	previous study [29].
174	2.4 RT-qPCR analysis

175 Expression analyses of RhCpeb and the N transporter genes RhNrt2, RhAmt1, and

176 *RhDur3* were performed. Gene-specific primers used for RT-qPCR are listed in Table 1.

177 RT-qPCR reactions were performed using a Lightcycler 96 (Roche Diagnostics, Ottweiler,

178 Germany) and TB Green Premix Ex Taq II (Takara Bio Inc.) following the manufacturer's

179	instructions. The reaction mix contained 10 μL of TB Green Premix Ex Taq II, 2.0 μL of
180	diluted cDNA template, and 0.8 μ L each of forward and reverse primers (final primer
181	concentration was 400 nM) in a final volume of 20 μ L. Thermocycler conditions were
182	95°C for 30 s, followed by 40 cycles of 95°C for 5 s, 60°C for 30 s, and 60°C for 60 s.
183	All reactions were performed in duplicate. The crossing cycle number (Cp) was
184	automatically determined for each reaction by the Lightcycler 96 application software,
185	with default parameters determined using the second derivative method. Gene expression
186	was analyzed using the Pfaffl method [32], and ACT was used as an internal control for
187	normalization [29].

Target gene	Sequence (5'-3 ')	Product size (bp)	E (%)	R^2	Source
RhCpeb	AGCCATACGACGGTTAGTGTAG	185	94.5	1.000	[29]
	TAGGTGGTGCAGATCTACAAGC				
Act	TTCTCCTTGATGTCCCGCAC	122	103.3	0.993	[29]
	ATCCTCCGTCTTGACCTTGC				
RhNrt2	GCTCTTCTTCATCGCAGTGAAC	180	105.2	0.998	[29]
	GTTCGTTTCTTCATCTCGCTCG				
RhAmt1	AGCCGAACCACAGGATGAAC	139	100.8	1.000	This study
	GGGTTCTCGGGTTTGATGGG				
RhDur3	TGACGGGCATGCTTATCCTC	137	96.6	0.997	This study
	GTAGTAGGTGCCCTTCAGGC				

Table 1 Nucleotide sequence of the primers designed for RT-qPCR analysis.

Primer efficiency E (%) = $(10^{-1/\text{slope}} - 1) \times 100$

189 2.5 Statistical analyses

190 Results were expressed as means of three biological replicates \pm SE. Data were analyzed 191 using Tukey's test for specific growth rate and PE productivity and one-way ANOVA, 192 followed by Dunnett's multiple comparison test for relative gene expression. The 193 significance threshold was set at P < 0.05. All the statistical analyses were performed 194 using Microsoft Excel. 195 3. Results 196 3.1 Cell growth and PE contents under different N sources 197 Fig. 1 shows the changes in the cell density of Rhodomonas sp. grown using different N 198 sources. The cell density in each group at 0 h, when each N source was supplemented, was $2.7 \pm 0.01 \times 10^6$ cells mL⁻¹. The N-supplemented groups showed an exponential 199 200 increase in cell density from 12 h of the experiment onward, and the maximum cell density in each group was 4.5×10^6 cells mL⁻¹ in the nitrate group, 3.9×10^6 cells mL⁻¹ 201 in the ammonium group, and 3.9×10^6 cells mL⁻¹ in the urea group. The highest specific 202 growth rate of 0.30 \pm 0.02 day^{-1} was obtained in the nitrate group, followed by 0.26 \pm 203 0.03 day⁻¹ in the urea group, and 0.23 ± 0.03 day⁻¹ in the ammonium group (Table 2). In 204

- 205 contrast, in the control group without added N sources, cell density barely increased
- throughout the experiment.

207 Fig. 1. Changes in cell density of *Rhodomonas* sp. grown using different nitrogen

sources.

209 Nitrogen sources, i.e., nitrate, ammonium, and urea, were added to the medium at 0 h.

- 210 The media for the control group was not supplemented with a nitrogen source. Data are
- 211 expressed as the mean of three replicates \pm SE.

212	The changes in PE content and relative PE recovery rate (R_{PE}) in <i>Rhodomonas</i> sp. are
213	shown in Fig. 2. After the N removal by the medium replacement (at -48 h in the figures),
214	the PE content decreased, and the cells drastically became discolored to greenish as
215	previously reported. The respective PE contents at 0 h were 0.64 ± 0.02 pg cell ⁻¹ in the
216	control group, 0.67 ± 0.03 pg cell ⁻¹ in the nitrate group, 0.74 ± 0.13 pg cell ⁻¹ in the
217	ammonium group, and 1.13 \pm 0.02 pg cell ⁻¹ in the urea group (Fig. 2A). After the
218	supplementation of N sources, the N-supplemented groups exhibited a remarkable
219	increase in PE content, reaching maximum values of 3.8 ± 0.01 pg cell ⁻¹ in the nitrate
220	group, 3.8 ± 0.12 pg cell ⁻¹ in the ammonium group, and 3.8 ± 0.18 pg cell ⁻¹ in the urea
221	group. The respective R_{PE} at 48 h was 0.57 ± 0.02 -fold in the control group, 5.73 ± 0.18 -
222	fold in the nitrate group, 5.13 ± 0.16 -fold in the ammonium group, and 3.36 ± 0.16 -fold
223	in the urea group (Fig. 2B). The PE productivity (P_{PE}) for each period is presented in
224	Table 2. The P_{PE} at 0–48 h was $-0.02 \pm 0.0 \ \mu \text{g mL}^{-1} \ \text{h}^{-1}$ in the control group, 0.32 ± 0.01
225	$\mu g \ m L^{-1} \ h^{-1}$ in the nitrate group, $0.26 \pm 0.02 \ \mu g \ m L^{-1} \ h^{-1}$ in the ammonium group, and
226	$0.25\pm0.01~\mu g~mL^{-1}~h^{-1}$ in the urea group, and no significant differences were observed
227	among the three N sources. At 12-24 h, the nitrate group showed a significantly higher

- 228 P_{PE} of 0.41 ± 0.03 µg mL⁻¹ h⁻¹ compared to the other groups. In contrast, the highest P_{PE}
- 229 of $0.45 \pm 0.03 \ \mu g \ m L^{-1} \ h^{-1}$ in this study was obtained in the ammonium group at 24–36
- 230 h. In the control group, P_{PE} gave negative values throughout the experiment.

Fig. 2. Phycoerythrin content (A) and relative PE recovery rate (R_{PE}) (B) of

232 *Rhodomonas* sp. grown in different nitrogen sources.

Nitrogen was removed from the medium at -48 h. Nitrogen sources, nitrate, ammonium, and urea were respectively supplemented to the medium at time 0 h. The control group was medium without a supplemented nitrogen source. Data are expressed as the mean of three replicates \pm SE.

Table 2 Specific growth rate (μ) and PE productivity (P_{PE}) of *Rhodomonas* sp. grown in different nitrogen sources.

Nitrogen source	Specific growth rate $(\mu, \operatorname{day}^{-1})$	PE productivity (P_{PE} , µg ml ⁻¹ h ⁻¹)						
		0–12 h	12–24 h	24–36 h	36–48 h	0–48 h		
Control	$-0.02\pm0.03^{\text{b}}$	-0.02 ± 0.00^{b}	$-0.02\pm0.00^{\circ}$	-0.02 ± 0.00^{b}	-0.01 ± 0.00^{b}	$-0.02\pm0.00^{\rm b}$		
Nitrate	0.30 ± 0.02^{a}	$0.14\pm0.02^{\rm a}$	$0.41\pm0.03^{\text{a}}$	$0.42\pm0.04^{\rm a}$	$0.32\pm0.05^{\text{a}}$	$0.32\pm0.01^{\mathtt{a}}$		
Ammonium	$0.23\pm0.03^{\text{a}}$	$0.08\pm0.04^{\rm a}$	$0.16\pm0.01^{\text{b}}$	$0.45\pm0.03^{\text{a}}$	$0.36\pm0.03^{\text{a}}$	$0.26\pm0.02^{\text{a}}$		
Urea	0.26 ± 0.03^{a}	$0.08\pm0.00^{\rm a}$	$0.22\pm0.01^{\rm b}$	$0.35\pm0.01^{\rm a}$	$0.35\pm0.02^{\text{a}}$	$0.25\pm0.01^{\rm a}$		

The data represent the mean \pm SE (n = 3). Significant differences in the same column are indicated using the same letter (P < 0.05)

238 *3.2 Gene expression of N transporters*

- 239 The relative expression of the N transporter genes in Rhodomonas sp. grown under N-
- 240 sufficient and N-starved conditions is shown in Fig. 3. All transporter genes were
- 241 upregulated under N-starved conditions. The relative expression of *RhNrt2*, *RhAmt1*, and
- 242 RhDur3 under N-starved conditions was approximately 16.5-fold, 1.92-fold, and 2.21-
- 243 fold higher than that under N-sufficient conditions. Significant differences between the
- two groups were observed for *RhNrt2* and *RhDur3*.

Fig. 3. Relative expression of nitrogen transporter genes, i.e., *RhNrt2* (A), *RhAmt1*

246 (B), and RhDur3 (C), of Rhodomonas sp. grown under nitrogen-sufficient and -

248 Data are expressed as the mean of three replicates \pm SE. Asterisks (*) indicate significant

249 differences (P < 0.05).

250 *3.3 Gene expression of cpeb*

251 The relative RhCpeb expression patterns of Rhodomonas sp. grown using different N 252 sources are shown in Fig. 4. RhCpeb was significantly upregulated in all the N-253 supplemented groups, whereas it was significantly suppressed in the control group and 254 was barely detectable until the end. Relative RhCpeb expression surged immediately after 255 nitrate supplementation in the nitrate group and was significantly different from the initial 256 value at 0 h, unlike in the other groups. The maximum RhCpeb expression levels were 257 35.9-fold in the nitrate group, 14.7-fold in the ammonium group, and 18.3-fold in the urea 258 group. In contrast, a decrease in RhCpeb expression was observed from 36 to 48 h in the 259 ammonium group.

261 different nitrogen sources.

262 Nitrogen sources nitrate, ammonium, and urea were added to the medium at 0 h. The

263 control group was medium without a supplemented nitrogen source. Data are expressed

264	as the mean of	three replicates	\pm SE. As	terisks (*)) indicate	significan	t differences	between
-----	----------------	------------------	--------------	-------------	------------	------------	---------------	---------

265 the initial value at 0 h and each value (P < 0.05).

266 **4. Discussion**

267 N is a key biological molecule that profoundly affects cell growth and biosynthesis of 268 bioactive compounds in microalgae. The selection of N sources is directly linked to N 269 availability and influences the biosynthesis of diverse bioactive compounds such as 270 amino acids, lipids, and carotenoids [33-35]. The amounts of intracellular PE has a 271 significant impact on the potential applications of Rhodomonas species as feed, given its 272 close association with nutritional value and culture stability. Therefore, selecting the 273 optimal N source is a crucial research avenue for enhancing the overall utility of 274 Rhodomonas species as feed in aquaculture. In the present study, we set up a 48 h-N 275 starvation starter culture prior to a batch culture experiment to reliably assess the effect 276 of different N sources on PE recovery in discolored Rhodomonas sp. Our previous 277 findings indicated that although Rhodomonas sp. accumulates intracellular N compounds 278 and their downstream metabolites, their influence on physiological activities, such as cell 279 growth and biosynthesis of bioactive compounds, tends to diminish approximately 48 h 280 after the transition to N-starved conditions [29]. Consequently, the chosen experimental 281 design was deemed pertinent for scrutinizing the distinct effects of individual N sources.

282	We also confirmed the capacity of each of the tested N sources in Rhodomonas sp.
283	through expression analysis of N transporter genes. The transcript levels of RhNrt2,
284	RhAmt1, and RhDur3 were measured after 72 h of N starvation. As shown in Fig. 4, all N
285	transporters were upregulated under N starvation, which aligns with the typical response
286	observed in other microalgae species [36,37]. This supports the conclusion that this
287	species can directly take up and utilize each of the tested N sources.
288	Although the influence of N sources on PE biosynthesis in cryptophytes remains
289	understudied, extensive research on bacteria has highlighted that the optimal N source for
290	phycobiliprotein biosynthesis is diverse and depends on the species or strain. For example,
291	De Lorimier et al. [38] observed a 10-20% increase in phycocyanin content in
292	Synechococcus sp. PCC 7002 when cultured on ammonium rather than nitrate. In contrast,
293	a study by Liotenberg et al. [39] reported a 35% lower PE content in Calothrix sp. grown
294	in ammonium than in nitrate. Additionally, Khazi et al. [40] conducted a comparative
295	study on the impact of nitrate and ammonium on phycocyanin biosynthesis in three
296	cyanobacteria: Phormidium sp., Pseudoscillatiria sp., and Arthorospira platensis. Their
297	findings revealed that the former two species exhibited 5-15% higher phycocyanin

298	production when grown in ammonium, whereas nitrate was favorable for the latter species
299	because growth inhibition occurred with ammonium. Our data demonstrated the
300	effectiveness of all tested N sources, including nitrate, ammonium, and urea, for cell
301	growth and PE biosynthesis in discolored Rhodomonas sp. In the present study, N
302	starvation treatment for 48 h decreased the intracellular PE content and discolored cells
303	to greenish, but when each N source was supplemented to the medium, the PE content
304	rebounded to approximately 80% of the initial level within 48 h, visually restoring the
305	cell color to bright red. The nitrate group showed the highest specific growth rate and had
306	a more than 10% higher R_{PE} than the other N sources and demonstrated superior
307	immediacy in PE recovery. Therefore, based on these findings, it is considered that among
308	the three N sources tested in this study, nitrate is the most effective N source for PE
309	recovery. To the best of our knowledge, this is the first documented evidence
310	demonstrating the efficacy of N supplementation for PE recovery from discolored
311	Rhodomonas species.

312 Mercier et al. [15] proposed that cells undergoing active growth would exhibit lower 313 concentrations of phycobiliproteins because their synthesis may compete with the

314	production of other essential proteins, and cells would preferentially use the metabolic
315	capacity for these vital components. Furthermore, considering that cell division divides
316	the accumulated PE, their explanation positing a conflict between cell growth and
317	intracellular PE content appears plausible. Other studies support this phenomenon; for
318	instance, a comprehensive study by Chaloub et al. [21] on the combined effects of
319	temperature and light on PE biosynthesis revealed a clear negative correlation between
320	specific growth rate and PE biosynthesis. Similarly, a study by Latsos et al. [24] proposed
321	a strong negative correlation between PE content and cell growth, with a coefficient of
322	determination exceeding 0.8. In our current study, despite the active cell growth, the
323	nitrate group showed significantly high PE productivity of $0.41\pm0.03~\mu g~mL^{-1}~h^{-1}$ in the
324	12-24 h period (Table 2), comparable with values reported in previous studies mentioned
325	above. This result suggests that there was no critical competition between cell growth and
326	PE biosynthesis in the present experimental setup. The compatibility observed between
327	PE biosynthesis and cell growth can be attributed to the high N concentration (7.0 mM
328	used in this study), which exceeded the species growth requirements. We previously
329	reported that the maximum N requirement for this species was 3.5 mM and that no

330	positive effect on growth occurred beyond this concentration [28]. On the other hand,
331	Madkour et al. [41] reported that, irrespective of the N requirement for growth, increasing
332	the N concentration in the medium boosts the biosynthesis of proteins, including
333	photosynthetic pigments. Considering these reports and the present results, the
334	application of a high N concentration would be effective for recovery of discolored
335	Rhodomonas species, irrespective of their N requirements. However, caution should be
336	exercised as the use of excessive nitrogen sources in aquacultural sites can lead to
337	eutrophication of the natural marine environment via effluents. In addition, the use of
338	high concentration of ammonium may be inappropriate as it may induce acidification of
339	the medium due to excess protons released during the ammonium assimilation process,
340	leading to cell lysis [27,42]. Indeed, in the present study, when incubation was extended
341	beyond 48 h, cell mortality, possibly due to medium acidification, was observed only in
342	the ammonium group at 72 h (data not shown). In the future, regardless of the N source
343	used, it will be necessary to investigate the appropriate N supply for PE recovery, taking
344	into account the above issue.

345 Our previous work [29] proposed that *RhCpeb*, encoding the β -subunit of PE, serves as a

346	good molecular indicator of PE biosynthesis in Rhodomonas sp., with its expression
347	pattern closely reflecting PE biosynthesis dynamics. In the present study, we expected a
348	reappearance of RhCpeb expression, which diminished with N starvation upon N
349	supplementation. The obtained results support this prediction, revealing that all three N
350	sources tested significantly re-promoted RhCpeb expression compared to the control
351	group, which exhibited no increase in expression. The distinct expression profiles
352	observed for each N source are noteworthy. The ammonium and urea groups exhibited a
353	gradual increase in expression, whereas the nitrate group consistently showed strong
354	expression immediately after N source supplementation. Interestingly, these expression
355	patterns in each group broadly mirrored the trends observed in the PE productivity results.
356	Phycobiliprotein biosynthesis involve intricate regulatory mechanisms. In their study
357	investigating the impact of light spectra on pigment concentration and the expression of
358	photosynthesis-related genes in R. salina, Schomaker et al. [43] suggested that the
359	transcriptional levels of related genes, such as $RhCpeb$ and $RhCpea$ (encoding the α -
360	subunit of PE), did not necessarily reflect the actual pigment concentrations. They
361	attributed this disparity to the regulation of phycobiliprotein biosynthesis, which is

362	governed by post-transcriptional or post-translational modifications. Although this study
363	did not delve into such epigenetic dynamics in PE biosynthesis, our findings suggest a
364	potential correlation between intracellular N metabolites and the regulation of
365	phycoerythrin synthesis. Analysis of variations in <i>RhCpeb</i> expression profiles for each N
366	source obtained in this study could offer valuable insights into the complex regulatory
367	mechanisms that dictate intracellular PE biosynthesis in cryptophytes.
368	5. Conclusion
369	We investigated the effects of three different N sources, i.e., nitrate, ammonium, and urea,
370	on the recovery of PE content in discolored Rhodomonas sp. Our investigation
371	highlighted the efficiency of all three N sources in promoting PE recovery, with nitrate
372	exhibiting the highest performance in PE biosynthesis. These findings were further
373	validated by expression analysis using <i>RhCpeb</i> as a molecular indicator, emphasizing the
374	potential of nitrate as the most favorable N source for Rhodomonas species. This study is
375	the first to demonstrate the recoverability of PE content in discolored Rhodomonas sp.
376	through supplementation with an appropriate N source, even after complete cell
377	discoloration. These findings pave the way for informed strategies for the stable

378 management and production of *Rhodomonas* species as feed for aquaculture.

379 Funding

- 380 This study was supported by the Japan Society for the Promotion of Science (JSPS
- 381 KAKENHI, Grant Numbers JP22KJ3203 and JP19J13027).

382 Acknowledgements

383 We thank Editage (www. editage.com) was used for English language editing.

384 Data availability

- 385 The biological materials and data generated in this study are available upon request
- 386 from the corresponding authors.

References

388	[1]	S.M. Renaud, L. Van Thin	h, D.L. Parry, Th	e gross chemical co	mposition
389		and fatty acid composition	of 18 species of	tropical Australian r	nicroalgae
390		for possible use in ma	riculture, Aquac	ulture 170 (1999)	147–159.
391		https://doi.org/10.1016/S00)44-8486(98)0039	<u>99-8</u> .	
392	[2]	C. Latsos, J. van Houck	e, K.R. Timmer	nans, The effect of	f nitrogen
393		starvation on biomass yield	d and biochemica	al constituents of Rh	odomonas
394		sp., Front Mar Sci 7 (2020)	900. <u>https://doi.o</u>	rg/10.3389/fmars.202	20.563333
395	[3]	R. Gagné, R. Tremblay, F.	Pernet, P. Miner	, J.F. Samain, F. Oliv	vier, Lipid
396		requirements of the scallo	p Pecten maximu	us (L.) during larval	and post-
397		larval development in rela	tion to addition	of Rhodomonas salin	na in diet,
398		Aquaculture	309	(2010)	212–221.
399		https://doi.org/10.1016/J.A	QUACULTURE.	2010.09.040.	
400	[4]	S. Yamamoto, R. Yamato,	T. Yoshimatsu, O	Optimum culture con	ditions of
401		Rhodomonas sp. Hf-1 strai	n as a live food f	or aquatic animals, F	ish Sci 84
402		(2018) 691–697. <u>https://do</u>	i.org/10.1007/s12	<u>562-018-1201-x</u> .	

403	[5]	M. Guevara, B.O. Arredondo-Vega, Y. Palacios, K. Saéz, P.I. Gómez,
404		Comparison of growth and biochemical parameters of two strains of
405		Rhodomonas salina (Cryptophyceae) cultivated under different
406		combinations of irradiance, temperature, and nutrients, J Appl Phycol 28
407		(2016) 2651–2660. https://doi.org/10.1007/s10811-016-0835-2.
408	[6]	A. Bartual, L.M. Lubián, J.A. Gálvez, F.X. Niell, Effect of irradiance on
409		growth, photosynthesis, pigment content and nutrient consumption in dense
410		cultures of Rhodomonas salina (Wislouch) (Cryptophyceae), Cienc Mar 28
411		(2002) 381–392. https://doi.org/10.7773/CM.V28I4.236.
412	[7]	M.T.T. Vu, C. Douëtte, T.A. Rayner, C. Thoisen, S.L. Nielsen, B.W. Hansen,
413		Optimization of photosynthesis, growth, and biochemical composition of
414		the microalga Rhodomonas salina-An established diet for live feed
415		copepods in aquaculture, J Appl Phycol 28 (2016) 1485–1500.
416		https://doi.org/10.1007/s10811-015-0722-2.
417	[8]	P.C. Oostlander, J. van Houcke, R.H. Wijffels, M.J. Barbosa, Growth and
418		fatty acid content of Rhodomonas sp. under day:night cycles of light and

419		temperature,	Algal	Res	51	(2020)	102034.
420		https://doi.org/10	.1016/J.AL	<u>GAL.2020.1</u>	02034.		
421	[9]	A. Muller-Feuga	, The role	of microalg	gae in aq	uaculture: Si	tuation and
422		trends, J	Appl	Phycol	12	(2000)	527–534.
423		https://doi.org/10	.1023/A:10	<u>0810630441</u>	<u>7</u> .		
424	[10]	G. Drillet, S. Frou	ël, M.H. Sic	hlau, P.M. J	epsen, J.K	. Højgaard, A	.K. Joarder,
425		B.W. Hansen, Sta	atus and rec	commendatio	ons on ma	arine copepoc	l cultivation
426		for use as	live feed	d, Aquacu	ulture 3	15 (2011)	155–166.
427		https://doi.org/10	.1016/J.AQ	<u>UACULTU</u>	<u>RE.2011.</u>	<u>02.027</u> .	
428	[11]	M.R. Brown, S.	W. Jeffrey	, J.K. Volk	aman, G.	A. Dunstan,	Nutritional
429		properties of mice	roalgae for	mariculture,	Aquacult	cure 151 (199	7) 315–331.
430		https://doi.org/10	.1016/S004	<u>4-8486(96)(</u>)1501-3.		
431	[12]	C. Latsos, E. Was	senaar, T. N	Aoerdijk, B.	Coleman	, J. Robbens,	S. van Rou,
432		L. Bastiaens, J.	van Hou	cke, K.R.	Timmerm	nans, Effect	of pH on
433		Rhodomonas sali	na growth,	biochemica	l composi	ition, and tast	e, produced

434	in semi-large scale under sunlight conditions, J Appl Phycol 34 (2022)
435	1215–1226. https://doi.org/10.1007/s10811-022-02730-1.
436 [1]	B] P. Seixas, P. Coutinho, M. Ferreira, A. Otero, Nutritional value of the
437	cryptophyte Rhodomonas lens for Artemia sp., J Exp Mar Biol Ecol 381
438	(2009) 1–9. <u>https://doi.org/10.1016/j.jembe.2009.09.007</u> .
439 [14	4] M.J. Fernández-Reiriz, A. Perez-Camacho, M.J. Ferreiro, J. Blanco, M.
440	Planas, M.J. Campos, U. Labarta, Biomass production and variation in the
441	biochemical profile (total protein, carbohydrates, RNA, lipids and fatty
442	acids) of seven species of marine microalgae, Aquaculture 83 (1989) 17–37.
443	https://doi.org/10.1016/0044-8486(89)90057-4.
444 [1:	5] L. Mercier, E. Peltomaa, A. Ojala, Comparative analysis of phycoerythrin
445	production in cryptophytes, J Appl Phycol 34 (2022) 789-797.
446	https://doi.org/10.1007/s10811-021-02657-z.
447 [10	6] A.B. Doust, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, The photophysics of
448	cryptophyte light-harvesting, J Photochem Photobiol A 184 (2006) 1-17.
449	https://doi.org/10.1016/J.JPHOTOCHEM.2006.06.006.

450	[17]	A.F. da Silva, S.O. Lourenço, R.M. Chaloub, Effects of nitrogen starvation
451		on the photosynthetic physiology of a tropical marine microalga
452		Rhodomonas sp. (Cryptophyceae), Aquat Bot 91 (2009) 291–297.
453		https://doi.org/10.1016/j.aquabot.2009.08.001.
454	[18]	P. Coutinho, M. Ferreira, I. Freire, A. Otero, Enriching Rotifers with
455		"Premium" Microalgae: Rhodomonas lens, Mar Biotechnol (NY) 22 (2020)
456		118-129. https://doi.org/10.1007/s10126-019-09936-4.
457	[19]	S. Yamamoto, P. Bossier, T. Yoshimatsu, Biochemical characterization of
458		Rhodomonas sp. Hf-1 strain (cryptophyte) under nitrogen starvation,
459		Aquaculture 516 (2020) 734648.
460		https://doi.org/10.1016/j.aquaculture.2019.734648.
461	[20]	C. Lichtlé, Effects of nitrogen deficiency and light of high intensity on
462		Cryptomonas rufescens (Cryptophyceae) I, Cell Photosynthetic Apparatus
463		Transform Encystment, Protoplasma 101 (1979) 283–299.
464		https://doi.org/10.1007/BF01276944.

465	[21]	R.M. Chaloub, N.M.S. Motta, S.P. de Araujo, P.F. de Aguiar, A.F. da Silva,							
466		Combined effects of irradiance, temperature and nitrate concentration on							
467		phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae),							
468		Algal Res 8 (2015) 89–94. <u>https://doi.org/10.1016/j.algal.2015.01.008</u> .							
469	[22]	A. Sciandra, L. Lazzara, H. Claustre, M. Babin, Responses of growth rate,							
470		pigment composition and optical properties of Cryptomonas sp. to light and							
471		nitrogen stresses, Mar Ecol Prog Ser 201 (2000) 107–120.							
472		https://doi.org/10.3354/MEPS201107.							
473	[23]	A. Lewitus, D. Caron, Relative effects of nitrogen or phosphorus depletion							
474		and light intensity on the pigmentation, chemical composition, and volume							
475		of Pyrenomonas salina (Cryptophyceae), Mar Ecol Prog Ser 61 (1990) 171-							
476		181. https://doi.org/10.3354/MEPS061171.							
477	[24]	C. Latsos, G. Bakratsas, T. Moerdijk, J. van Houcke, K.R. Timmermans,							
478		Effect of salinity and pH on growth, phycoerythrin, and non-volatile umami							
479		taste active compound concentration of Rhodomonas salina using a D-							

480		optimal	design	approach,	J Appl	Phycol	33	(2021)	3591–3602.
481		https://do	oi.org/10	.1007/s1081	1-021-02	<u>547-4</u> .			
482	[25]	C. Latsos	s, J. van I	Houcke, L. I	Blommae	rt, G.P. Ver	rbeek	e, J. Kroi	nkamp, K.R.
483		Timmerr	nans, Ef	fect of ligh	nt quality	and qua	ntity	on proc	luctivity and
484		phycoery	thrin co	ncentration	in the cr	yptophyte	e Rho	domonas	s sp., J Appl
485		Phycol 3	3 (2021)	729–741. <u>h</u>	<u>ttps://doi</u>	<u>.org/10.10</u>	<u>07/s1</u>	0811-02	<u>0-02338-3</u> .
486	[26]	C. Thois	en, M.T.'	Г. Vu, T. Ca	rron-Cab	aret, P.M.	Jepse	n, S.L. N	Vielsen, B.W.
487		Hansen,	Small-se	cale experi	ments ai	med at oj	ptimiz	zation o	f large-scale
488		productio	on of the	microalga	Rhodomo	nas salind	a, J Aj	ppl Phyc	ol 30 (2018)
489		2193–22	02. <u>https</u>	://doi.org/10	0.1007/s1	0811-018-	<u>1434</u>	<u>-1</u> .	
490	[27]	A. Ficht	bauer, R	.J.M. Temn	nink, M.	La Russa	, Cor	ntrolling	the nitrogen
491		environn	nent for o	optimal <i>Rho</i>	domonas	<i>salina</i> pro	oducti	ion, J Ap	pl Phycol 35
492		(2023) 1:	565–157	4. <u>https://do</u>	i.org/10.1	.007/s108	<u>11-02</u>	<u>3-03020</u>	<u>-0</u> .
493	[28]	S. Yama	amoto,	R. Yamato	, Y. Ar	itaki, P.	Boss	ier, T.	Yoshimatsu,
494		Develop	ment of a	a culture pro	otocol for	Rhodomo	<i>nas</i> sp	5. Hf-1 s	train through

495		laboratory	trials,	Fish	Sci	85	(2019)) 69	5–703.
496		https://doi.	org/10.1007/	<u>/s12562-0</u>	<u>19-01325-</u>	• <u>7</u> .			
497	[29]	S. Yamamo	oto, K. Ito, M	1. Tokuda,	N. Tsutsu	ıi, Influe	ence of n	itrate sta	rvation
498		on transci	ript levels	of nitrate	e transpo	rter (N	rt2) and	l β-subu	init of
499		phycoeryth	nrin (Cpeb)	genes in	Rhodoma	onas sp.	, Algal	Res 74	(2023)
500		103217. <u>ht</u>	tps://doi.org/	/ <u>10.1016/J</u>	.ALGAL.	2023.10	<u>3217</u> .		
501	[30]	R.R.L. Gu	uillard, J.H.	Ryther, S	tudies of	marine	plankto	nic diate	oms. I.
502		Cyclotella	nana hustee	dt, and <i>De</i>	etonula co	onfervac	ea (clev	e) Gran,	Can J
503		Microbiol	8 (1962) 229	0–239. <u>http</u>	os://doi.or	g/10.113	<u>9/m62-0</u>	<u>29</u> .	
504	[31]	S. Beer,	A. Eshel,	Determi	ning ph	ycoeryth	rin and	l phyco	ocyanin
505		concentrati	ions in aqueo	ous crude	extracts o	f red alg	gae, Mar	Freshw	Res 36
506		(1985) 785	5–792. <u>https:/</u>	//doi.org/1	0.1071/M	F98507	<u>85</u> .		
507	[32]	M.W. Pfaf	fl, A new ma	uthematica	l model fo	or relativ	ve quanti	fication	in real-
508		time R	T–PCR,	Nucleic	Acids	Res	29	(2001)	e45.
509		https://doi.	org/10.1093/	/nar/29.9.e	<u>e45</u> .				

510 [33]	S.O. Lourenço, E. Barbarino, J. Mancini-Filho, K.P. Schinke, E. Aidar,
511	Effects of different nitrogen sources on the growth and biochemical profile
512	of 10 marine microalgae in batch culture: An evaluation for aquaculture,
513	Phycologia 41 (2002) 158-168. <u>https://doi.org/10.2216/I0031-8884-41-2-</u>
514	<u>158.1</u> .
515 [34]	J.P. Fidalgo, A. Cid, E. Torres, A. Sukenik, C. Herrero, Effects of nitrogen
516	source and growth phase on proximate biochemical composition, lipid
517	classes and fatty acid profile of the marine microalga Isochrysis galbana,
518	Aquaculture 166 (1998) 105–116. <u>https://doi.org/10.1016/S0044-</u>
519	<u>8486(98)00278-6</u> .
520 [35]	L.F. Wu, P.C. Chen, C.M. Lee, The effects of nitrogen sources and
521	temperature on cell growth and lipid accumulation of microalgae, Int
522	Biodeterior Biodegrad 85 (2013) 506–510.
523	https://doi.org/10.1016/J.IBIOD.2013.05.016.
524 [36]	LK. Kang, SP.L. Hwang, GC. Gong, HJ. Lin, PC. Chen, J. Chang,
525	A.J. Chang, LK. Kang, SP.L. Hwang, GC. Gong, HJ. Lin, PC. Chen,

526		J. Chang, Influences of nitrogen deficiency on the transcript levels of
527		ammonium transporter, nitrate transporter and glutamine synthetase genes
528		in Isochrysis galbana (Isochrysidales, Haptophyta), Phycologia 46 (2007)
529		521–533. https://doi.org/10.2216/06-44.1.
530	[37]	B. Song, B.B. Ward, Molecular cloning and characterization of high-affinity
531		nitrate transporters in marine phytoplankton 1, J Phycol 43 (2007) 542–552.
532		https://doi.org/10.1111/J.1529-8817.2007.00352.X.
533	[38]	R.M. De Lorimier, R.L. Smith, S.E. Stevens, Regulation of phycobilisome
534		structure and gene expression by light intensity, Plant Physiol 98 (1992)
535		1003–1010. https://doi.org/10.1104/PP.98.3.1003.
536	[39]	S. Liotenberg, D. Campbell, R. Rippka, J. Houmard, N.T. de Marsac, Effect
537		of the nitrogen source on phycobiliprotein synthesis and cell reserves in a
538		chromatically adapting filamentous cyanobacterium, Microbiology
539		(Reading) 142 (1996) 611-622. <u>https://doi.org/10.1099/13500872-142-3-</u>
540		<u>611</u> .

541 [40]	M.I. Khazi, Z. Demirel, M.C. Dalay, Evaluation of growth and
542	phycobiliprotein composition of cyanobacteria isolates cultivated in
543	different nitrogen sources, J Appl Phycol 30 (2018) 1513-1523.
544	https://doi.org/10.1007/s10811-018-1398-1.
545 [41]	F.F. Madkour, A.E.W. Kamil, H.S. Nasr, Production and nutritive value of
546	Spirulina platensis in reduced cost media, Egypt J Aquat Res 38 (2012) 51-
547	57. https://doi.org/10.1016/J.EJAR.2012.09.003.
548 [42]	Y. Collos, P.J. Harrison, Acclimation and toxicity of high ammonium
549	concentrations to unicellular algae, Mar Pollut Bull 80 (2014) 8-23.
550	https://doi.org/10.1016/J.MARPOLBUL.2014.01.006.
551 [43]	R.A. Schomaker, T.L. Richardson, J.L. Dudycha, Consequences of light
552	spectra for pigment composition and gene expression in the cryptophyte
553	Rhodomonas salina, Environ Microbiol 25 (2023) 3280–3297.
554	https://doi.org/10.1111/1462-2920.16523.
555	