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Abstract 32 

The linkage between growth rate and feeding success has been shown to strengthen the 33 

effects of early growth rate on later growth rate in the early life history of fish. 34 

However, the growth–feeding linkage largely remains to be tested at the individual 35 

level within the same populations/cohorts. We examined the growth–feeding linkage 36 

for multiple populations/cohorts in Japanese anchovy Engraulis japonicus larvae and 37 

Pacific round herring Etrumeus micropus larvae, through otolith microstructure 38 

analysis, based on samples collected from the commercial fishery for larval fish in the 39 

Kii Channel, Japan. The three growth–feeding mechanisms, which are based on the 40 

respective potential advantages of larger somatic size, higher growth rate, and earlier 41 

morphological development for achieving feeding success, were tested to understand 42 

how growth rate relates to feeding success. The “somatic size” mechanism was 43 

supported for all of 6 samples for anchovy larvae and 3 of 4 samples for round herring 44 

larvae. The “growth rate” mechanism was supported for 2 of 6 samples for anchovy 45 

larvae and 3 of 4 samples for round herring larvae. The “morphological development” 46 

mechanism was supported for 3 of 4 samples for anchovy larvae and all of 3 samples 47 

for round herring larvae. Overall, the present analysis supported the growth–feeding 48 

linkage but revealed the dynamics of the growth–feeding mechanisms. All the 49 

mechanisms were shown to operate at least for certain populations/cohorts, but none of 50 
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them were universally effective over all populations/cohorts across the two species. 51 

Understanding the dynamics of the growth–feeding mechanisms would provide 52 

precious hints for considering strategies of predicting recruitment dynamics. 53 

 54 

KEYWORDS 55 

anchovy, feeding success, growth rate, larvae, morphological development, otolith, 56 

round herring, somatic size 57 

 58 

1  |  INTRODUCTION 59 

 60 

Growth and survival dynamics during the early life stages have been a central issue in 61 

studies on recruitment mechanisms of fish. The “growth–survival” paradigm, taking its 62 

roots from the concept of growth-dependent mortality (Cushing, 1975) and later coined 63 

as the “growth–mortality” hypothesis (Anderson 1988), postulates that larger and/or 64 

faster-growing individuals will have higher probabilities of survival than smaller 65 

and/or slower-growing conspecifics. This paradigm comprises three functional 66 

mechanisms linking higher growth rate to survival advantages: “bigger is better”, 67 

“growth-selective predation”, and “stage duration” mechanisms (Hare and Cowen, 68 

1997; Searcy and Sponaugle, 2001; Houde, 2008; Leggett and Frank, 2008; Plaza & 69 

Ishida, 2008; Takasuka et al., 2017). The “bigger is better” mechanism (Miller et al., 70 

1988) focuses on survival advantages linked to larger somatic size. Faster-growing 71 

individuals are characterized by a larger somatic size than slower-growing conspecifics 72 

at a given age. This size-based mechanism works when larger larvae have higher 73 

growth rates in the population and larvae experience negative size-selective mortality 74 

(selectivity against smaller size). The “growth-selective predation” mechanism 75 
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(Takasuka et al., 2003, 2004a,b) links growth rates per se to survival directly. 76 

Slower-growing individuals generally display poorer physiological conditions and thus 77 

have a lower potential in antipredator behaviors (Chick & Van Den Avyle, 2000; 78 

Fuiman and Magurran, 1994; Skajaa et al., 2003). The mechanism works when 79 

slower-growing individuals are more vulnerable to predation mortality than 80 

faster-growing conspecifics at the same somatic size. The higher vulnerability of 81 

slower-growing individuals can result from lower locomotor activities (Nakamura et al., 82 

2022). The “stage duration” mechanism (Chambers and Leggett, 1987; Houde, 1987) 83 

focuses on the effects of growth rates on the timing of metamorphosis. This time-based 84 

mechanism works when higher growth rates accelerate the timing of the 85 

metamorphosis from larval to juvenile stages and faster-growing individuals 86 

experience a shorter duration of the high-mortality larval stage. The three 87 

growth–survival mechanisms are independent of and synergistic with one another in 88 

operation (Takasuka et al., 2003, 2017). 89 

The earlier studies on recruitment mechanisms of fish focused on the initial feeding 90 

success following yolk exhaustion (Hjort, 1914; Cushing, 1975, 1990; Lasker, 1975, 91 

1978). As the origin of fisheries oceanography, the “critical period” hypothesis 92 

postulated that feeding success/failure at the start of external feeding largely 93 

determines year-class strength of fish populations (Hjort, 1914). This concept was then 94 

extended to the “match/mismatch” and “ocean stability” hypotheses, which are based 95 

on the critical roles of starvation in regulating recruitment (Cushing, 1975, 1990; 96 

Lasker, 1975, 1978). Nonetheless, several review papers (Anderson, 1988; Leggett and 97 

DeBlois, 1994) contended that these hypotheses focusing on the feeding success at the 98 

start of external feeding have rarely been supported in the field. The current 99 

understanding holds that recruitment is determined by cumulative survival/mortality 100 
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throughout the larval to juvenile stages rather than a sole episodic starvation event 101 

immediately after hatching (Sissenwine, 1984; Watanabe et al., 1995; Houde, 2008; 102 

Robert et al., 2023). Furthermore, predation is recognized as the major and direct 103 

source of mortality throughout early life, whereas starvation is an important direct 104 

source mortality only during the short first-feeding period (Bailey and Houde, 1989). 105 

The extended timing over which mortality operates during early life thus constitutes a 106 

major departure from the classic hypothesis of Hjort (1914). 107 

Growth rate is autocorrelated by nature, which was often confirmed in daily 108 

increments recorded in the otolith microstructure (Campana, 1990; Folkvord et al., 109 

2000; Dower et al., 2009; Pepin et al., 2015). Growth autocorrelation is stronger when 110 

faster- and slower-growing individuals continue to growth faster and slower, 111 

respectively. To the contrary, growth autocorrelation is weaker when individual growth 112 

rate is variable or random throughout early development. The extent of growth 113 

autocorrelation has been evaluated at the group level by determining the correlation 114 

coefficient between combinations of daily otolith increment widths (proxies for daily 115 

growth rates), corresponding to two different ages (Dower et al., 2009; Robert et al., 116 

2014a; Pepin et al., 2015; Burns et al., 2021; Primo et al, 2021; Tanaka et al., 2023). 117 

Pepin et al. (2015) proposed to use the extent of growth autocorrelation as a tool for 118 

considering potential effects of early growth rate on later growth rate in the life history 119 

of fish. 120 

A potential mechanism underlying the growth autocorrelation is attributable to the 121 

linkage between growth rate and feeding success/failure (hereafter, growth–feeding 122 

linkage) (Dower et al., 2009; Robert et al., 2014a; Pepin et al., 2015). In theory, 123 

faster-growing larvae are characterized by higher probabilities of feeding success on 124 

which they rely to maintain higher growth rate levels (positive feedback loop); 125 
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reversely, slower-growing larvae are characterized by lower probabilities of feeding 126 

success and thus keep lower growth rate levels (negative feedback loop). The strength 127 

of these positive and negative feedback loops would be linked to the level of growth 128 

autocorrelation in a given species. Previous studies have shown that the level of growth 129 

autocorrelation differs among species with a general trend that faster-growing species 130 

display higher growth autocorrelation than slower-growing species (Pepin et al., 2015; 131 

Tanaka et al., 2023). These lines of evidence have led to the idea that feeding failure 132 

after the start of external feeding, even if it does not result in starvation mortality 133 

immediately, could continue to influence survival potential during the later life stages, 134 

especially in faster-growing species. In this sense, the effects of growth autocorrelation 135 

on survival potential could reconcile the classic recruitment hypotheses (importance of 136 

the first feeding stage) and the current “growth–survival” paradigm (importance of 137 

growth performance throughout early life), as argued by Tanaka et al. (2023). 138 

Despite the potential importance of the growth–feeding linkage, previous studies on 139 

this topic presented major limitations. First, the growth–feeding linkage was examined 140 

based on the data pooled over various samples originating from different populations 141 

and/or cohorts (regions and seasons). Second, the samples included only early larval 142 

stages. These limitations were mainly due to the difficulty to obtain a sufficient number 143 

of fish larvae, particularly late larvae, by a single plankton gear tow at a given station 144 

of a research survey. Hence, the growth–feeding linkage largely remains to be tested at 145 

the individual level within the same populations/cohorts. Growth–survival 146 

relationships have been shown to be more variable and dynamic than previously 147 

recognized when comparing growth and survival dynamics among different 148 

populations/cohorts (Robert et al., 2007; Takasuka et al., 2017). Here emerged a need 149 

to investigate the dynamics of the growth–feeding relationships among different 150 
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populations/cohorts in the field. 151 

Japan waters host a unique commercial fishery in which postlarval stages of small 152 

pelagic fish (called shirasu) are commercially captured by trawlers for food resources 153 

(e.g., raw fish for sushi and dried fish for snacks or cooking ingredients). The shirasu 154 

fishing grounds are typically formed in the shallow waters of coastal areas. One of the 155 

major shirasu fishing grounds is formed in the Kii Channel (Figure 1), where 156 

commercial catches include Japanese anchovy Engraulis japonicus (throughout the 157 

year), Japanese sardine Sardinops melanostictus (late autumn to mid-spring), and 158 

Pacific round herring Etrumeus micropus (late autumn to mid-summer) (Yasue et al., 159 

2011). Previous studies used multiple samples collected from the commercial catches 160 

to study growth, development, feeding, and trophodynamics during the early life stages 161 

of small pelagic fish in the Kii Channel (Yasue and Takasuka, 2009; Yasue et al., 2011, 162 

2014, 2016). The commercial fishery provides the unique opportunity to obtain large 163 

sample sizes of larvae from the same populations/cohorts, allowing us to examine 164 

variability in the relationships linking growth characteristics to feeding success at the 165 

individual level within the same populations/cohorts. 166 

In the present study, we examined the linkage between growth rate and feeding 167 

success at the individual level within the same populations/cohorts in Japanese 168 

anchovy larvae and Pacific round herring larvae, through otolith microstructure 169 

analysis, based on multiple samples collected from the shirasu fishery in the Kii 170 

Channel, Japan. As an analogy of the three functional mechanisms of the 171 

growth–survival paradigm, we considered three functional mechanisms linking growth 172 

rate to feeding success as hypotheses to test: “somatic size”, “growth rate”, and 173 

“morphological development” mechanisms, which are based on the respective 174 

potential advantages of larger somatic size, higher growth rate, and earlier 175 
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morphological development for achieving feeding success. The “somatic size” 176 

mechanism hypothesizes that somatic size influences feeding success: larger 177 

individuals have higher probabilities of feeding success at a given age. The “growth 178 

rate” mechanism hypothesizes that growth rate directly influences feeding success: 179 

faster-growing individuals have higher probabilities of feeding success at a given 180 

somatic size. The “morphological development” mechanism hypothesizes that 181 

morphological development influences feeding success: more morphologically 182 

developed individuals have higher probabilities of feeding success at a given age. The 183 

three growth–feeding mechanisms were tested to understand how growth rate relates to 184 

feeding success. 185 

 186 

 187 

2  |  MATERIALS AND METHODS 188 

 189 

2.1  |  Field sampling 190 

Samples of Japanese anchovy larvae and Pacific round herring larvae were collected 191 

from the commercial catches by a trawler in the shirasu fishing grounds of the Kii 192 

Channel, Japan, during July 2021 to April 2022 (Table 1, Figure 1). A trawler with a 193 

cod end mesh size of approximately 1.5–2.0 mm was towed once or twice during the 194 

morning hours (08:00–10:30) to target the larvae of approximately 13–30 mm in 195 

standard length (SL) (Yasue and Takasuka, 2009). The samples of anchovy and round 196 

herring larvae were randomly selected from the commercial catches and were frozen at 197 

–20°C in a freezer. Sardine larvae were also included in the catches in winter but were 198 

not considered for the present study, as they only represented a minor proportion of 199 

catches. 200 
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Japanese anchovy spawn almost throughout the year with a peak from May to July, 201 

and Pacific round herring spawn mainly from October to July off the Pacific coast of 202 

Japan (Oozeki et al., 2007). In the Kii Channel, anchovy larvae occur almost 203 

throughout the year, and round herring larvae occur mainly from November to July 204 

(Yasue et al., 2011). Larval sampling was conducted in different months to collect 205 

larval samples with various growth and morphological characteristics. The present 206 

sampling design intended to reveal the dynamics of the growth–feeding mechanisms 207 

by taking advantage of the seasonal variability in growth and morphological 208 

characteristics. 209 

A total of 6 samples comprising 1,889 individuals and 4 samples comprising 1,214 210 

individuals were collected and analyzed for anchovy and round herring, respectively 211 

(Table 1). Each sample included > 200 individuals (> 300 individuals in most cases) of 212 

anchovy or round herring larvae. Note that “sample” here refers to a group of larvae 213 

collected simultaneously during a given net tow. The larvae within each sample were 214 

assumed to have hatched during a certain period and experienced similar 215 

environmental conditions, at least at the time of sampling. Even with relatively wide 216 

age ranges (thus wide hatching date ranges) within each sample (Table 1), different 217 

samples were interpreted as different populations/cohorts. The samples covered a 218 

variety of seasonal populations/cohorts with a substantial variability of sea temperature 219 

at 10 m depth near the trawling areas in the fishing ground (Figure 1), which was 220 

measured by a self-registering thermometer attached to an observation station 221 

(Shirahama Oceanographic Observatory, Disaster Prevention Research Institute, Kyoto 222 

University, Wakayama, Japan). The thermometer was located < 5 km from the trawling 223 

areas. 224 

 225 
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2.2  |  Measurement and observation 226 

SL was measured to the nearest 0.1 mm for each larva using a digital caliper, after a 227 

sample of frozen larvae was thawed. A photograph of each larva was taken by a digital 228 

camera for subsequent morphological measurements. On a photograph, head length, 229 

head height, lower jaw length, and orbit diameter (eye diameter) were measured to the 230 

nearest 0.01 mm, using ImageJ software (Schneider et al., 2012; https://imagej.net/, 231 

RRID: SCR_003070). These morphological characteristics were selected as factors 232 

which are potentially related to feeding activity and ability (Sabatés and Saiz, 2000; 233 

Gisbert et al., 2004; Catalán et al., 2007; Morote et al., 2008). Head and jaw 234 

morphology could be influential in feeding, since mouth size has previously been 235 

shown to influence feeding success (Blaxter and Hunter, 1982). In general, clupeoid 236 

fish larvae are visual predators that feed through a particulate-feeding mode, until they 237 

alternate between particulate-feeding and filter-feeding modes with their gill raker 238 

development (de Ciechomski, 1966; Uotani et al., 1978; James and Findlay, 1989; 239 

Garrido et al., 2007). Thus, eye diameter could also be a potential factor influencing 240 

feeding success. Note that the photographs of larvae and the data of morphological 241 

characteristics were available only for 4 of 6 samples and 3 of 4 samples for anchovy 242 

and round herring, respectively (Table S1). 243 

The status of feeding success was defined by presence/absence of any food items in 244 

the gut of each larva by visual observation under a binocular stereo microscope. The 245 

main prey items of anchovy and round herring larvae are copepods. For example, a gut 246 

content analysis showed that copepods represented the vast majority of prey items 247 

(90–99% and 74–95% for anchovy and round herring, respectively) based on the 248 

samples in the Kii Channel from December to March (Yasue et al., 2011). These 249 

copepods are highly visible as they are colored with the astaxanthin red pigment. 250 

https://imagej.net/
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Given this characteristic, we were able to externally detect the presence of ingested 251 

copepods in the relatively transparent, linear digestive tractus of the larvae. If any 252 

copepods were visible in the guts of a given individual by external observation, that 253 

larva was identified as “feeding larva”; if no copepod was detected in a given 254 

individual, it was identified as “non-feeding larva”. This identification method 255 

indicates the status of feeding success a few hours prior to capture but does not reflect 256 

feeding history. 257 

 258 

2.3  |  Growth analysis 259 

Sagittal otoliths were dissected from each larva and then mounted on a glass slide with 260 

enamel resin. Either the left or the right sagitta was used based on the assumption of 261 

symmetry between both otoliths. A series of otolith measurements were conducted by 262 

an otolith measurement system (RATOC System Engineering, Tokyo, Japan), which is 263 

composed of a transmitted light microscope with a video camera connected to a 264 

computer and monitor. This system enables measuring an otolith on a live image under 265 

different focal points. On a monitor, a measurement transect was set from the nucleus 266 

to the outermost posterior margin of the otolith. Along the measurement transect, 267 

maximum otolith radius (OR) and each daily increment width were measured to the 268 

nearest 0.1 µm. 269 

The first increment is deposited 3 to 4 days after hatching for anchovy (Tsuji and 270 

Aoyama, 1984) and 2 days after hatching for round herring (Hayashi and Kawaguchi, 271 

1994) in rearing conditions. Thus, age in days (daily age) was determined as the 272 

number of daily growth increments plus 3 and plus 1 for anchovy and round herring, 273 

respectively. Hatching date was determined by date of capture and daily age. SL at the 274 

time of hatching was 2.9 mm for anchovy (Fukuhara and Takao, 1988) and 5.0 mm for 275 
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round herring (Hayashi and Kawaguchi, 1994). Mean growth rate from hatching to 276 

capture was calculated by dividing SL minus the SL at the time of hatching by daily 277 

age. SL and daily growth rate at each age were back-calculated by the biological 278 

intercept method (Campana 1990). The relationships between OR and SL were well 279 

expressed as allometric relationships for anchovy and round herring larvae (Takasuka 280 

et al., 2008; Yasue et al., 2011). Thus, an allometric formula was determined separately 281 

for each larva with SL at the first growth increment deposition fixed at 5.6 mm for 282 

anchovy (Fukuhara, 1983) and 6.0 mm for round herring (Hayashi and Kawaguchi, 283 

1994) as the biological intercepts in the back-calculation. In the back-calculated 284 

growth history, the growth rate based on the distance from the last increment to the 285 

outermost margin was excluded, as it does not necessarily correspond to the daily 286 

growth rate. Note that the growth rate data were available for all the individuals of 6 287 

samples and 4 samples for anchovy and round herring, respectively (Table 1), and that 288 

the 6 anchovy samples and their growth rate data were also used in Tanaka et al. (2024), 289 

which detailed seasonal variability in the otolith and somatic size relationship for 290 

anchovy larvae. 291 

If any uncoupling in the OR–SL relationship occurs, it could be a possible source of 292 

biases in the back-calculation (Campana 1990). For example, growth effects on the 293 

OR–SL relationship were observed for anchovy and sardine larvae (Takasuka et al., 294 

2008; Tanaka et al., 2024) as in many species. Therefore, the fitness of the allometric 295 

formula was a concern. In the present samples, the values of coefficient of 296 

determination (r2) of allometric formula in the OR–SL relationships were 0.500 and 297 

0.688 for the overall samples of anchovy and round herring, respectively. These 298 

coefficients were relatively low because of the substantial variability among samples. 299 

At the sample level, however, the r2 value ranged from 0.821 to 0.949 and from 0.893 300 
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to 0.922 for anchovy and round herring, respectively. These values were high enough 301 

to ensure reliable back-calculation based on the allometric relationships, compared to 302 

the cases of several previous studies (e.g., Takasuka et al., 2008 and references therein). 303 

Note that the processes and calculation methods for otolith microstructure analysis in 304 

the present study are consistent with those in the previous studies on growth–survival 305 

dynamics for anchovy and round herring larvae (e.g., Takasuka et al., 2003, 2004a,b; 306 

Yasue and Takasuka, 2009; Yasue et al., 2011; Takasuka et al., 2017; Tanaka et al., 307 

2024). 308 

 309 

2.4  |  Mechanism tests 310 

Somatic size, age, and growth rate were compared between the feeding and 311 

non-feeding larvae to understand the general differences in growth characteristics 312 

between the two groups for the respective samples. First, relationships of SL to daily 313 

age (i.e., size-at-age data) were described and compared between the two groups. Then, 314 

the three growth–feeding mechanisms were tested in the context of the direct or 315 

indirect effects of growth rate in a more rigorous manner. 316 

The “somatic size” mechanism was tested by comparing growth rate between the 317 

feeding and non-feeding larvae at the same daily age. Mean growth rate from hatching 318 

to capture was adopted as a proxy for growth rate since somatic size is a cumulative 319 

consequence of growth rate from hatching to capture (Takasuka et al., 2003, 2008). A 320 

linear regression analysis was applied to the relationships of mean growth rate to daily 321 

age for the feeding and non-feeding larvae, respectively. When linear regressions were 322 

statistically significant for both groups and their slopes were parallel, an analysis of 323 

covariance (ANCOVA) was applied to the data with daily age as a covariate to test for 324 

any differences in the intercepts of the regressions. When linear regressions were not 325 
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significant for either or both groups or their slopes were not parallel given significance, 326 

differences in mean growth rate were tested by Student’s t-test or Welch’s t-test, 327 

depending on the normality and homoscedasticity, between the feeding and 328 

non-feeding larvae within their common ranges of daily age. 329 

The “growth rate” mechanism was tested by comparing growth rate between the 330 

feeding and non-feeding larvae at the same somatic size. Recent 3-day mean growth 331 

rate directly before capture in the back-calculated growth history was adopted as a 332 

proxy for growth rate since it represents an instantaneous status of growth rate 333 

(Takasuka et al., 2007, 2017). A linear regression analysis was applied to the 334 

relationships of recent 3-day mean growth rate to SL for the feeding and non-feeding 335 

larvae, respectively. When linear regressions were statistically significant for both 336 

groups and their slopes were parallel, an ANCOVA was applied to the data with SL as 337 

a covariate. Otherwise, differences in recent 3-day mean growth rate were tested by 338 

Student’s t-test or Welch’s t-test between the feeding and non-feeding larvae within 339 

their common ranges of SL. 340 

The “morphological development” mechanism was tested by comparing 341 

morphological characteristics (head length, head height, lower jaw length, and eye 342 

diameter) between the feeding and non-feeding larvae at the same daily age. The 343 

morphological characteristics were expressed in proportion to SL since they increased 344 

with SL (Figures S1–S4). Allometric relationships fitted to the relationships of the 345 

morphological characteristics (in proportion to SL) to daily age. Thus, a linear 346 

regression analysis was applied to the relationships of the morphological 347 

characteristics to daily age in ln-transformed data. When linear regressions were 348 

statistically significant for both groups and their slopes were parallel, an ANCOVA was 349 

applied to the data with daily age as a covariate. Otherwise, differences in 350 
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morphological characteristics were tested by Student’s t-test or Welch’s t-test between 351 

the feeding and non-feeding larvae within their common ranges of daily age. The 352 

effects of growth rate on morphological characteristics were also examined for the 353 

respective samples. Mean growth rate from hatching to capture was adopted as a proxy 354 

for growth rate since morphological characteristics are potentially a cumulative 355 

consequence of growth rate from hatching to capture. As both growth rate and 356 

morphological characteristics were related to daily age (see Results), both factors were 357 

standardized by daily age. Residuals of linear regressions of growth rate on daily age 358 

and those of morphological characteristics on daily age (in ln-transformed data) were 359 

used to describe the relationships of morphological characteristics to growth rate. Then, 360 

a linear regression analysis was applied to those relationships. 361 

 362 

3  |  RESULTS 363 

 364 

3.1  |  Growth characteristics 365 

Profiles of the samples are summarized in Table 1. For anchovy larvae, a total of 6 366 

samples (A1–A6) comprising 1,889 individuals were collected from July 12, 2021 to 367 

April 28, 2022, under the sea temperature range of 16.5–26.9°C. The number of 368 

individuals ranged from 213 (Sample A4) to 388 (Sample A1). The SL of anchovy 369 

larvae ranged from 13.7 to 35.5 mm, and the daily age ranged from 16 to 64 days. 370 

Mean growth rate from hatching to capture and recent 3-day mean growth rate showed 371 

substantial variability within and among samples. The fraction of feeding larvae 372 

fluctuated between 14.1% and 48.3% depending on the samples. Note that any samples 373 

including less than 20 individuals of feeding larvae were not considered in the present 374 

study as the sample size was considered insufficient to ensure statistical reliability. For 375 
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round herring larvae, a total of 4 samples (R1–R4) comprising 1,214 individuals were 376 

collected from July 29, 2021 to April 14, 2022, under the temperature range 377 

16.5–26.8°C. The number of individuals ranged from 273 (Sample R1) to 322 (Sample 378 

R4). The SL of round herring larvae ranged from 15.9 to 33.5 mm; the daily age 379 

ranged from 17 to 64 days. Mean growth rate from hatching to capture and recent 380 

3-day mean growth rate showed substantial variability within and among the samples. 381 

The fraction of feeding larvae fluctuated between 32.6% and 76.9%. 382 

The relationships of SL to daily age (size-at-age data) varied among the samples 383 

both for anchovy larvae and round herring larvae (Figure 2). The ranges of SL and 384 

daily age substantially overlapped between feeding and non-feeding larvae. However, 385 

the feeding larvae tended to be larger and older than the non-feeding larvae. 386 

 387 

3.2  |  Somatic size mechanism 388 

Mean growth rate from hatching to capture decreased with daily age both for anchovy 389 

larvae and round herring larvae (Figure 3). Negative linear regressions were fitted to 390 

the relationships of mean growth rate to daily age for feeding larvae and non-feeding 391 

larvae for all samples (p < 0.05). The slopes of the regressions differed between 392 

feeding and non-feeding larvae (p < 0.001) and thus the mean growth rates were 393 

compared between the two groups by Student’s t-tests within the common daily age 394 

ranges for Samples A4 (anchovy), R1, and R4 (round herring). The slopes of the 395 

regressions were parallel and thus the intercepts were compared between the two 396 

groups by ANCOVAs for Samples A1, A2, A3, A5, A6 (anchovy), R2, and R3 (round 397 

herring). Mean growth rates were significantly higher in feeding larvae than in 398 

non-feeding larvae at the same daily age for all of 6 samples (Samples A1–A6) for 399 

anchovy larvae and 3 of 4 samples (Samples R1–R3) for round herring larvae (p < 400 
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0.01). As an exception, mean growth rates were significantly lower in feeding larvae 401 

than in non-feeding larvae for Sample R4 (round herring) (p < 0.001). 402 

 403 

3.3  |  Growth rate mechanism 404 

Recent 3-day mean growth rate directly before capture increased, decreased, or did not 405 

relate with SL, depending on the samples, for anchovy larvae and round herring larvae 406 

(Figure 4). Positive or negative linear regressions were fitted to the relationships of 407 

recent growth rate to SL for both of feeding and non-feeding larvae for Samples A1, 408 

A2, A4, A5, A6 (anchovy), and R4 (round herring) (p < 0.05) but not for Samples A3 409 

and R1–R3 (round herring) (p > 0.05). The linear regressions were not significant for 410 

either or both of feeding and non-feeding larvae (p > 0.05) or the slopes of the linear 411 

regressions differed between feeding and non-feeding larvae (p < 0.001) and thus the 412 

recent growth rates were compared between the two groups by Student’s t-tests within 413 

the common SL ranges for Samples A1, A2, A3, A5, A6 (anchovy), and R1–R3 (round 414 

herring). The slopes of the regressions were parallel and thus the intercepts were 415 

compared between the two groups by ANCOVAs for Samples A4 (anchovy) and R4 416 

(round herring). Recent 3-day mean growth rates were significantly higher in feeding 417 

larvae than in non-feeding larvae at the same somatic size for 2 of 6 samples (Samples 418 

A4 and A6) for anchovy larvae and 3 of 4 samples (Samples R1–R3) for round herring 419 

larvae (p < 0.01). As exceptions, recent 3-day mean growth rates were significantly 420 

lower in feeding larvae than in non-feeding larvae for Samples A1 (anchovy) and R4 421 

(round herring) (p < 0.05). 422 

 423 

3.4  |  Morphological development mechanism 424 

The proportions of head length, head height, lower jaw length, and eye diameter to SL 425 
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increased with daily age in general (Figures 5–8). Linear regressions were fitted to the 426 

relationships of the head length proportions to daily age in ln-transformed data for both 427 

of feeding larvae and non-feeding larvae for Samples A3, A4 (anchovy), and R2–R4 428 

(round herring) (p < 0.05) but not for Samples A5 and A6 (anchovy) (p > 0.05) (Figure 429 

5). The linear regressions were not significant for either or both of feeding and 430 

non-feeding larvae (p > 0.05) or the slopes of the linear regressions differed between 431 

feeding and non-feeding larvae (p < 0.001) and thus the head length proportions were 432 

compared between the two groups by Student’s t-tests within the common daily age 433 

ranges for Samples A5, A6 (anchovy), R3, and R4 (round herring). The slopes of the 434 

regressions were parallel and thus the intercepts were compared between the two 435 

groups by ANCOVAs for Samples A3, A4 (anchovy), and R2 (round herring). The 436 

head length proportions were significantly higher in feeding larvae than in non-feeding 437 

larvae at the same daily age for 2 of 4 samples (Samples A3 and A4) for anchovy 438 

larvae and all of 3 samples (Samples R2–R4) for round herring larvae (p < 0.01) 439 

(Figure 5). 440 

  Differences in the head height, lower jaw length, and eye diameter proportions to 441 

daily age (in ln-transformed data) between feeding and non-feeding larvae were tested 442 

in a similar manner to the head length proportions. The head height and lower jaw 443 

length proportions were significantly higher in feeding larvae than in non-feeding 444 

larvae at the same daily age for 3 of 4 samples (Samples A3–A5) for anchovy larvae 445 

and all of 3 samples (Samples R2–R4) for round herring larvae (p < 0.05) (Figures 6 446 

and 7). The eye diameter proportions were significantly higher in feeding larvae than 447 

in non-feeding larvae at the same daily age for 1 of 4 samples (Sample A3) for 448 

anchovy larvae and all of 3 samples (Samples R2–R4) for round herring larvae (p < 449 

0.01) (Figure 8). 450 
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  The head length proportions (standardized by daily age) were positively related to 451 

mean growth rate from hatching to capture (standardized by daily age) for 3 of 4 452 

samples (Samples A3–A5) for anchovy larvae and 2 of 3 samples (Samples R2 and R3) 453 

for round herring larvae (linear regression analysis, p < 0.01) (Supplementary Figure 454 

S5). The head height proportions (standardized by daily age) were positively related to 455 

mean growth rate (standardized by daily age) for all of 4 samples (Samples A3–A6) for 456 

anchovy larvae and all of 3 samples for round herring larvae (linear regression analysis, 457 

p < 0.01) (Supplementary Figure S6). The lower jaw length and eye diameter 458 

proportions (standardized by daily age) were positively related to mean growth rate 459 

(standardized by daily age) for all of 4 samples (Samples A3–A6) for anchovy larvae 460 

and 2 of 3 samples (Samples R2 and R3) for round herring larvae (linear regression 461 

analysis, p < 0.05) (Supplementary Figures S7 and S8). 462 

 463 

3.5  |  Three growth–feeding mechanisms 464 

The results of the tests of the three mechanisms are summarized in Table 2. Overall, 465 

the “somatic size” mechanism was supported for all of 6 samples for anchovy larvae 466 

and 3 of 4 samples for round herring larvae. The “growth rate” mechanism was 467 

supported for 2 of 6 samples for anchovy larvae and 1 of 4 samples for round herring 468 

larvae. The “morphological development” mechanism was supported at least in any of 469 

the head length, head height, lower jaw length, and eye diameter for 3 of 4 samples for 470 

anchovy larvae and all of 3 samples for round herring larvae. 471 

 472 

4  |  DISCUSSION 473 

 474 

Growth–feeding linkage was examined for Japanese anchovy larvae and Pacific round 475 
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herring larvae by testing the three underlying functional mechanisms. The present 476 

study led to advances in testing the growth–feeding linkage from several viewpoints. 477 

First, the growth–feeding linkage was tested at the individual level for multiple 478 

populations/cohorts separately. Second, the samples covered broad ranges of age and 479 

somatic size of larvae. These advances were realized by taking advantage of the 480 

present samples including multiple populations/cohorts with substantial sample sizes 481 

from the shirasu fishing ground. Lastly, theoretical progress lies in testing the 482 

growth–feeding linkage in terms of functional mechanisms. In reality, the actual 483 

processes of the different mechanisms could be interconnected or interactive. 484 

Nonetheless, a conceptual distinction in theory is useful to understand the roles of 485 

growth characteristics in the feeding success, as in the growth–survival mechanisms 486 

(Hovenkamp, 1992; Takasuka et al., 2017). In this context, the growth–feeding 487 

mechanisms were tested under a clearly defined theoretical framework. 488 

The “somatic size” mechanism was supported for the majority of tested samples of 489 

different populations/cohorts. It is natural that larger larvae feed more than smaller 490 

larvae in general, which was obvious in the comparison of somatic size between the 491 

feeding and non-feeding larvae. Hence, this mechanism becomes an axiomatic truth if 492 

broader larval size ranges are considered. Nonetheless, of note here is the fact that 493 

somatic size variability influenced feeding success even at the same age: the larger 494 

larvae showed higher feeding success even among individuals of the same age (and 495 

thus the same hatch date). In general, larger larvae show higher levels of activity and 496 

thus higher levels of feeding and antipredator behaviors (Miller et al., 1988). Higher 497 

growth rate leads to larger somatic size at the same age. The advantages of larger 498 

somatic size are likely to be evident in somatic size variability among the larvae 499 

hatching on the same date, which is a consequence of higher growth rate (i.e., indirect 500 
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effects of growth rate). 501 

The “growth rate” mechanism was supported only for the minority of tested samples. 502 

The tests for multiple populations/cohorts showed that this mechanism is possible, 503 

even though it was not universal as the “somatic size” mechanism. Faster-growing 504 

larvae would be less vulnerable to predation mortality as they are characterized by 505 

higher physiological conditions, which are generally linked to more elaborated 506 

antipredator behaviors among the larvae of the same somatic size (Fuiman and 507 

Magurran, 1994; Skajaa et al., 2003; Takasuka et al., 2003, 2004a,b). Similarly, 508 

faster-growing larvae generally display enhanced feeding behaviors at a given somatic 509 

size. Thus, growth rate could have direct effects on feeding success regardless of 510 

somatic size or morphological development. 511 

The “morphological development” mechanism was supported for the majority of 512 

tested samples. Although the results differed among morphological characteristics, all 513 

the characteristics were found to be potential drivers of feeding success. Head height 514 

and lower jaw length would be particularly effective in anchovy larvae, whereas all 515 

morphological characteristics would be effective in round herring larvae. The effects of 516 

eye diameter were detected for round herring only, suggesting some species-specific 517 

importance of the morphological characteristics in driving feeding. Visual detection 518 

may play a more important role in the feeding behaviors of round herring relative to 519 

anchovy. Larger proportions of head, jaw, and eye could be interpreted as factors 520 

leading to enhanced feeding behaviors, which would improve the likeliness of feeding 521 

success (Sabatés and Saiz, 2000; Gisbert et al., 2004; Catalán et al., 2007; Morote et al., 522 

2008; Pepin, 2023, 2024). Furthermore, higher growth rate was shown to accelerate 523 

morphological development in general. Thus, the advantages of larger head, longer jaw, 524 

and larger eye relative to somatic size would also be a consequence of higher growth 525 
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rate (i.e., indirect effects of growth rate). As a note, all the measurements (somatic size 526 

and morphological characteristics) were one-dimensional (length, height, or width), 527 

and growth rate was originally defined as the increase of somatic length per unit time. 528 

Hence, two- or three-dimensional measurements (e.g., body shape or weight) and 529 

growth rate considering body mass may provide further advances in understanding the 530 

“morphological development” mechanism in future studies. 531 

Overall, the present analysis supported the growth–feeding linkage in anchovy 532 

larvae and round herring larvae. At the same time, however, the tests for multiple 533 

populations/cohorts revealed the dynamics of the growth–feeding mechanisms. All the 534 

mechanisms were shown to operate at least for certain populations/cohorts, but none of 535 

them were universally effective over all populations/cohorts across the two species. As 536 

in the growth–survival mechanisms, the growth–feeding mechanisms are also 537 

independent of and synergistic with one another. However, we found a marked contrast 538 

in the relative importance of mechanisms based on somatic size and growth rate 539 

between the growth–survival and growth–feeding mechanisms. The operation of the 540 

growth–survival mechanisms was shown to be dynamic for multiple 541 

populations/cohorts of anchovy in Sagami Bay, which is another shirasu fishing 542 

ground (Takasuka et al., 2017). Although none of the three growth–survival 543 

mechanisms were universally effective, the “growth-selective predation” mechanism 544 

was identified to be the major mechanism regulating the growth–survival relationships, 545 

whereas the “bigger is better” mechanism was identified to be a minor one. That is, the 546 

effects of growth rate at a given size in survivorship were more generally detected than 547 

those of somatic size at a given age. This significance of the “growth-selective 548 

predation” mechanism relative to the “bigger is better” mechanism was theoretically 549 

explained by the optimal foraging theory on the side of predators (Takasuka et al., 550 
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2003, 2007). In short, smaller larvae are more easily captured by some types of 551 

predators but are not necessarily optimal for the predators in terms of energy gain, 552 

whereas slower-growing larvae are more easily captured by the predators without 553 

sacrificing energy intake on the side of predators. To the contrary, the effects of 554 

somatic size at a given age were more generally detected than those of growth rate at a 555 

given size in the case of the growth–feeding mechanisms. This contrast is probably due 556 

to the fact that feeding success of larvae is not related to any energy trade-off on the 557 

side of the predators, given that there is no disadvantage of larger somatic size in 558 

feeding success. For this reason, we argue that the effects of somatic size could be 559 

detected more easily and markedly in the growth–feeding mechanisms than in the 560 

growth–survival mechanisms. 561 

The variability observed in the growth–feeding mechanisms in anchovy larvae and 562 

round herring larvae could be attributed to spatial and temporal variability in the 563 

characteristic of larval populations/cohorts driven by environmental factors. The size 564 

and age composition and density of the larvae would differ depending on the 565 

populations/cohorts. Moreover, these characteristics could vary temporally even within 566 

the populations/cohorts. Physical factors (e.g., sea temperature and salinity) and 567 

biological factors (e.g., prey and predator fields) would influence growth rate and 568 

physiological conditions of the individual larvae and thus size and age composition and 569 

density of the larval populations/cohorts (Baumann et al., 2003; Llopiz et al., 2014). 570 

Such environmental factors would also influence feeding success itself. For example, 571 

the substantial variability in the fraction of feeding larvae may be a consequence of 572 

variability in food availability and intraspecific competition. Identifying the factors 573 

responsible for the dynamics is outside the scope of the present study. As the dynamics 574 

of these factors are highly complex in the field, a systematic and extensive monitoring 575 
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survey for the larval populations/cohorts and environmental factors will be required to 576 

clarify how the potential factors are generating the variability in the growth–feeding 577 

linkage and the operation of the growth–feeding mechanisms feeding mechanisms. 578 

Several research avenues could be drawn from the present study. First, a quantitative 579 

evaluation of feeding success would improve our understanding of the roles of the 580 

growth–feeding mechanisms. Here, feeding success was evaluated by the 581 

presence/absence of any number of prey items in the guts in a qualitative manner. The 582 

present study intentionally avoided evaluating feeding success in a quantitative manner 583 

because of lack of information on digestion and evacuation rates. However, growth rate 584 

may also affect food consumption rate (Dower et al., 2009; Robert et al., 2014a; Pepin 585 

et al., 2015). Any quantitative assessment based on the number and size of prey items 586 

may improve understanding the roles of growth rate in feeding success. For example, 587 

carbon content data converted from prey size and numbers would be useful in such an 588 

assessment in future studies (Robert et al., 2014a; Pepin et al., 2015). Furthermore, 589 

detailed taxonomical knowledge of prey selectivity by larvae may be needed to better 590 

quantify feeding success (Robert et al., 2014b). In the Kii Channel, the main prey items 591 

of anchovy larvae are copepods, but copepod prey composition shows major seasonal 592 

shifts (Yasue et al., 2010). Reconstruction of carbon content data from the detailed 593 

information on prey items may also enable an examination of feeding history, which 594 

lacked in the present approach. Second, there will be a need to design a combination of 595 

field and laboratory experiments. The present study discriminated the growth–feeding 596 

mechanisms in theory. Yet, it is virtually impossible to exactly discriminate the effects 597 

of the different factors, in consideration of the interconnective or interactive nature of 598 

somatic size, growth rate, and morphological development. For example, the effects of 599 

somatic size and morphological development cannot be quantitatively discriminated. 600 
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Likewise, it is difficult to specify how each factor actually influences the feeding 601 

success in the field. Therefore, laboratory experiments will be needed to analyze 602 

feeding behaviors in reared populations where age and size structures can be controlled, 603 

as in previous studies on feeding success (Hunter, 1972; Blaxter and Hunter, 1982; 604 

Chick & Van Den Avyle, 2000; Garrido et al., 2007; Peck et al., 2015). In this context, 605 

the present field study provided a hypothetical framework of the growth–feeding 606 

mechanisms by identifying potential key factors driving feeding success for future 607 

experimental studies. 608 

The positive and negative feedback loops in growth and feeding have been 609 

considered to strengthen growth autocorrelation (Dower et al., 2009; Robert et al., 610 

2014a; Pepin et al., 2015). The extent of growth autocorrelation differed among 611 

taxonomic groups and species (Pepin et al., 2015; Tanaka et al., 2023). Furthermore, 612 

some intraspecific variability was observed among different cohorts in some species 613 

(Pepin et al., 2015). Based on our results, we argue that the dynamics of the 614 

growth–feeding mechanisms would generate such interspecific and intraspecific 615 

variability in growth autocorrelation. The primary motivation behind the 616 

“growth–survival” paradigm is predicting recruitment dynamics based on growth rate 617 

during early life stages. In this context, the extent of the growth–feeding linkage can be 618 

interpreted as an indicator of future survival potential based on early life stages. 619 

Understanding the dynamics of the growth–feeding mechanisms for different species 620 

and populations/cohorts would provide precious hints for considering strategies of 621 

predicting recruitment dynamics in target species and populations. 622 
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TABLE 1  Profiles of samples of Japanese anchovy Engraulis japonicus and Pacific round herring Etrumeus micropus larvae collected in 887 

the Kii Channel during July 2021 to April 2022. 888 
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 889 

Sample Date of capture ST (°C) Category n
Range Mean Range Mean Range Mean Range Mean

Anchovy
A1 Jul 12, 2021 24.1 All 388 15.5–32.0 23.5 20–59 32 0.26–0.90 0.51 0.45–0.91 0.65

Feeding 55 (14.2%) 19.8–30.7 26.6 25–59 39 0.30–0.71 0.46 0.47–0.86 0.62
Non-feeding 333 (85.8%) 15.5–32.0 23.0 20–55 31 0.26–0.90 0.52 0.45–0.91 0.66

A2 Jul 29, 2021 26.8 All 331 14.8–31.2 20.9 19–39 25 0.33–0.94 0.57 0.50–1.01 0.73
Feeding 160 (48.3%) 16.0–31.2 21.6 19–36 26 0.36–0.81 0.58 0.56–0.89 0.73
Non-feeding 171 (51.7%) 14.8–27.7 20.3 19–39 24 0.33–0.94 0.56 0.50–1.01 0.72

A3 Sep 9, 2021 26.9 All 313 13.7–34.6 23.4 16–44 29 0.23–0.86 0.52 0.40–0.95 0.71
Feeding 131 (41.9%) 18.7–34.6 26.2 20–44 33 0.35–0.82 0.54 0.57–0.87 0.72
Non-feeding 182 (58.1%) 13.7–29.5 21.3 16–40 27 0.23–0.86 0.51 0.40–0.87 0.70

A4 Mar 23, 2022 16.5 All 213 19.3–35.5 28.3 31–64 46 0.33–0.75 0.50 0.42–0.71 0.56
Feeding 41 (19.2%) 24.0–34.4 30.9 38–56 47 0.35–0.75 0.57 0.50–0.70 0.60
Non-feeding 172 (80.8%) 19.3–35.5 27.6 31–64 45 0.33–0.69 0.48 0.42–0.71 0.55

A5 Apr 14, 2022 18.9 All 341 16.6–33.1 24.8 23–48 36 0.27–0.91 0.55 0.47–0.88 0.62
Feeding 86 (25.2%) 18.2–32.9 25.8 27–45 36 0.35–0.77 0.56 0.48–0.88 0.64
Non-feeding 255 (74.8%) 16.6–33.1 24.4 23–48 36 0.27–0.91 0.54 0.47–0.80 0.61

A6 Apr 28, 2022 18.9 All 303 17.0–31.3 23.9 20–39 29 0.37–0.95 0.67 0.54–0.87 0.72
Feeding 55 (18.2%) 18.3–30.7 23.8 20–37 28 0.50–0.95 0.72 0.62–0.83 0.75
Non-feeding 248 (81.8%) 17.0–31.3 24.0 21–39 30 0.37–0.94 0.66 0.54–0.87 0.71

Round herring
R1 Jul 29, 2021 26.8 All 273 17.1–30.1 22.7 17–36 28 0.27–0.69 0.45 0.46–0.79 0.64

Feeding 210 (76.9%) 17.1–30.1 23.3 19–36 29 0.29–0.69 0.46 0.53–0.79 0.64
Non-feeding 63 (23.1%) 17.5–26.4 20.7 17–32 25 0.27–0.68 0.41 0.46–0.78 0.62

R2 Jan 19, 2022 17.4 All 314 19.1–33.5 25.2 22–48 30 0.41–0.86 0.59 0.52–0.83 0.67
Feeding 113 (36.0%) 20.0–33.5 26.9 22–44 33 0.46–0.86 0.61 0.55–0.83 0.67
Non-feeding 201 (64.0%) 19.1–33.2 24.3 22–48 29 0.41–0.85 0.58 0.52–0.78 0.66

R3 Mar 23, 2022 16.5 All 305 20.6–33.3 26.7 22–49 33 0.36–0.91 0.61 0.51–0.85 0.67
Feeding 129 (42.3%) 20.9–33.3 28.4 22–47 35 0.36–0.79 0.64 0.53–0.84 0.68
Non-feeding 176 (57.7%) 20.6–33.2 25.5 23–49 31 0.41–0.91 0.60 0.51–0.85 0.66

R4 Apr 14, 2022 18.9 All 322 15.9–31.7 24.6 19–64 37 0.26–0.82 0.42 0.39–0.85 0.54
Feeding 105 (32.6%) 18.6–31.7 25.9 22–64 41 0.27–0.60 0.39 0.39–0.65 0.52
Non-feeding 217 (67.4%) 15.9–31.6 23.9 19–60 35 0.26–0.82 0.43 0.41–0.85 0.55

ST: sea temperature; SL: standard length; Recent GR: recent 3-day mean growth rate directly before capture; Mean GR: mean growth rate from hatching to capture

SL (mm) Age (days) Recent GR (mm/day) Mean GR (mm/day)
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TABLE 2  Summary of the test results of the “somatic size”, “growth rate”, and “morphological development” mechanisms for Japanese 890 

anchovy Engraulis japonicus larvae and Pacific round herring Etrumeus micropus larvae. 891 

 892 

 893 

Sample Date of capture Somatic size Growth rate
Head legth Head height Lower jaw length Eye diameter

Anchovy
A1 Jul 12, 2021 Effective Contrary – – – –
A2 Jul 29, 2021 Effective NS – – – –
A3 Sep 9, 2021 Effective NS Effective Effective Effective Effective
A4 Mar 23, 2022 Effective Effective Effective Effective Effective NS
A5 Apr 14, 2022 Effective NS NS Effective Effective NS
A6 Apr 28, 2022 Effective Effective NS NS NS NS

Round herring
R1 Jul 29, 2021 Effective Effective – – – –
R2 Jan 19, 2022 Effective Effective Effective Effective Effective Effective
R3 Mar 23, 2022 Effective Effective Effective Effective Effective Effective
R4 Apr 14, 2022 Contrary Contrary Effective Effective Effective Effective

Morphological development
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Figure captions 894 

 895 

FIGURE 1  Sampling area for Japanese anchovy Engraulis japonicus larvae and 896 

Pacific round herring Etrumeus micropus larvae in the coastal fishing ground in the Kii 897 

Channel, Japan, during July 2021 to April 2022. Shaded area indicates sampling area; 898 

solid circle indicates the location of the observation station for the data of sea 899 

temperature at 10 m depth. 900 

 901 

FIGURE 2  Relationships of standard length to daily age (size-at-age) for the feeding 902 

larvae versus non-feeding larvae of Japanese anchovy Engraulis japonicus (A1–A6) 903 

and Pacific round herring Etrumeus micropus (R1–R4). 904 

 905 

FIGURE 3  Relationships of mean growth rate from hatching to capture to daily age 906 

for the feeding larvae and non-feeding larvae of Japanese anchovy Engraulis japonicus 907 

(A1–A6) and Pacific round herring Etrumeus micropus (R1–R4). Linear regressions of 908 

mean growth rate on daily age are shown when they were significant (equations not 909 

shown, p < 0.05). Shaded areas indicate ranges of daily age for the feeding larvae and 910 

non-feeding larvae for comparison. The comparison was limited to the common ranges 911 

for A4, R1, and R4 by Student’s t-test or Welch’s t-test when analysis of variance 912 

(ANCOVA) was not applicable and extended to the overall ranges for the other 913 

samples by ANCOVA. *Mean growth rates were significantly higher in feeding larvae 914 

(red asterisk) or non-feeding larvae (blue asterisk) (p < 0.01). 915 

 916 

FIGURE 4  Relationships of recent 3-day mean growth rate directly before capture to 917 

standard length for the feeding larvae and non-feeding larvae of Japanese anchovy 918 
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Engraulis japonicus (A1–A6) and Pacific round herring Etrumeus micropus (R1–R4). 919 

Linear regressions of recent growth rate on standard length are shown when they were 920 

significant (equations not shown, p < 0.05). Shaded areas indicate ranges of standard 921 

length for the feeding larvae and non-feeding larvae for comparison. The comparison 922 

was limited to the common ranges for A1, A2, A3, A5, A6, R1, R2, and R3 by 923 

Student’s t-test or Welch’s t-test when analysis of variance (ANCOVA) was not 924 

applicable and extended to the overall ranges for the other samples by ANCOVA. 925 

*Recent 3-day mean growth rates were significantly higher in feeding larvae (red 926 

asterisk) or non-feeding larvae (blue asterisk) (p < 0.05). 927 

 928 

FIGURE 5  Relationships of head length proportion to daily age for the feeding 929 

larvae and non-feeding larvae of Japanese anchovy Engraulis japonicus (A3–A6) and 930 

Pacific round herring Etrumeus micropus (R2–R4). Head length proportion is defined 931 

as the proportion of head length to standard length. Linear regressions of 932 

ln-transformed head length proportion on ln-transformed daily age are shown when 933 

they were significant (equations not shown, p < 0.05). Shaded areas indicate ranges of 934 

daily age for the feeding larvae and non-feeding larvae for comparison. The 935 

comparison was limited to the common ranges for A5, A6, R3, and R4 by Student’s 936 

t-test or Welch’s t-test when analysis of variance (ANCOVA) was not applicable and 937 

extended to the overall ranges for the other samples by ANCOVA. *Head length 938 

proportions were significantly higher in feeding larvae (red asterisk) (p < 0.01). 939 

 940 

FIGURE 6  Relationships of head height proportion to daily age for the feeding 941 

larvae and non-feeding larvae of Japanese anchovy Engraulis japonicus (A3–A6) and 942 

Pacific round herring Etrumeus micropus (R2–R4). Head height proportion is defined 943 
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as the proportion of head length to standard length. Linear regressions of 944 

ln-transformed head height proportion on ln-transformed daily age are shown when 945 

they were significant (equations not shown, p < 0.01). Shaded areas indicate ranges of 946 

daily age for the feeding larvae and non-feeding larvae for comparison. The 947 

comparison was limited to the common ranges for A4, A5, A6, and R3 by Student’s 948 

t-test or Welch’s t-test when analysis of variance (ANCOVA) was not applicable and 949 

extended to the overall ranges for the other samples by ANCOVA. *Head height 950 

proportions were significantly higher in feeding larvae (red asterisk) (p < 0.01). 951 

 952 

FIGURE 7  Relationships of lower jaw length proportion to daily age for the feeding 953 

larvae and non-feeding larvae of Japanese anchovy Engraulis japonicus (A3–A6) and 954 

Pacific round herring Etrumeus micropus (R2–R4). Lower jaw length proportion is 955 

defined as the proportion of lower jaw length to standard length. Linear regressions of 956 

ln-transformed lower jaw length proportion on ln-transformed daily age are shown 957 

when they were significant (equations not shown, p < 0.01). Shaded areas indicate 958 

ranges of daily age for the feeding larvae and non-feeding larvae for comparison. The 959 

comparison was limited to the common ranges for A4, A6, and R3 by Student’s t-test 960 

or Welch’s t-test when analysis of variance (ANCOVA) was not applicable and 961 

extended to the overall ranges for the other samples by ANCOVA. *Lower jaw length 962 

proportions were significantly higher in feeding larvae (red asterisk) (p < 0.05). 963 

 964 

FIGURE 8  Relationships of eye diameter proportion to daily age for the feeding 965 

larvae and non-feeding larvae of Japanese anchovy Engraulis japonicus (A3–A6) and 966 

Pacific round herring Etrumeus micropus (R2–R4). Eye diameter proportion is defined 967 

as the proportion of upper jaw length to standard length. Linear regressions of 968 
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ln-transformed eye diamete proportion on ln-transformed daily age are shown when 969 

they were significant (equations not shown, p < 0.05). Shaded areas indicate ranges of 970 

daily age for the feeding larvae and non-feeding larvae for comparison. The 971 

comparison was limited to the common ranges for all the samples by Student’s t-test or 972 

Welch’s t-test as analysis of variance (ANCOVA) was not applicable. *Eye diameter 973 

proportions were significantly higher in feeding larvae (red asterisk) (p < 0.01). 974 
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FIGURE 2 1000 
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FIGURE 3 1002 
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FIGURE 4 1004 
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