

Experimental assessment of copepod survival in response to the harmful dinoflagellate Karenia selliformis from the southeastern coast of Hokkaido, Japan

メタデータ	言語: English
	出版者:
	公開日: 2024-06-26
	キーワード (Ja):
	キーワード (En): copepod survival; harmful algae;
	ingestion rate; Karenia selliformis; marine ecosystem
	作成者: 大西, 拓也, 谷内, 由貴子, 渡辺, 剛, 紫加田, 知幸,
	葛西, 広海
	メールアドレス:
	所属: 水産研究・教育機構, 水産研究・教育機構,
	水産研究・教育機構, 水産研究・教育機構,
	水産研究・教育機構(死去)
URL	https://fra.repo.nii.ac.jp/records/2008609

1	Experimental assessment of copepod survival in response to the harmful dinoflagellate
2	Karenia selliformis from the southeastern coast of Hokkaido, Japan
3	
4	TAKUYA OHNISHI ^{1,*} , YUKIKO TANIUCHI ¹ , TSUYOSHI WATANABE ¹ , TOMOYUKI
5	SHIKATA ² , HIROMI KASAI ¹
6	
7	¹ Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and
8	Education Agency, Kushiro, Hokkaido 085–0802, Japan
9	² Goto Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education
10	Agency, Goto, Nagasaki 853–0508, Japan
11	
12	
13	
14	* Corresponding author: Takuya Ohnishi; E-mail, oonisi_takuya92@fra.go.jp
15	
16	Running page head: Effect of K. selliformis on copepod survival
17	

18 Abstract

19	In the autumn of 2021, a large-scale harmful algal bloom (HAB) emerged along the
20	southeast coast of Hokkaido, Japan, and this was predominantly composed of the dinoflagellate
21	Karenia selliformis. The emergence of K. selliformis-dominated HABs was the first observation
22	in Japan; therefore, no previous reports exist on the impact of HABs on zooplankton in the
23	region. This study investigated the effects of K. selliformis on the survival of copepods-a
24	critical component of the zooplankton community. The results indicated that the survival rates
25	of all six copepod species examined were markedly reduced, particularly at elevated K.
26	selliformis concentrations or during extended exposure. The copepod survival rate decline
27	occurred even in the absence of direct contact or ingestion of K. selliformis, thus implying that
28	K. selliformis may excrete harmful substances extracellularly. Feeding experiments revealed
29	that Neocalanus plumchrus consumes K. selliformis cells; however, the ingestion rate
30	diminished with increased concentrations of K. selliformis cells. The results suggest that larger
31	copepods with smaller surface-to-volume ratios may possess greater resilience to the harmful
32	substances compared to smaller species. Further, the HAB in southeast Hokkaido likely exerted
33	deleterious effects on lower trophic levels within the marine ecosystem by disrupting copepod
34	survival and feeding activity.

35 Key words: copepod survival, harmful algae, ingestion rate, *Karenia selliformis*, marine
36 ecosystem

37 Introduction

38	The emergence of a significant harmful algal bloom (HAB) was observed along the
39	Pacific coast of southeastern Hokkaido, Japan, in 2021. The dinoflagellate Karenia selliformis
40	Haywood was identified as the dominant species in the HAB, marking the first instance of a K.
41	selliformis-dominated bloom in Japan (Iwataki et al. 2022). The HAB persisted from mid-
42	September to late November (Kuroda et al. 2021) and extended >300 km along the southeastern
43	coast of Hokkaido, affecting areas with a depth of <300 m (Kuroda et al. 2022, Takagi et al.
44	2022). High-density blooms were noted on the continental shelf, sometimes exceeding 10^4 cells
45	mL ⁻¹ (Kuroda et al. 2022). The prolonged and extensive HAB severely impacted marine life
46	and fisheries, with substantial mortalities in species such as salmon, sea urchins, and mussels
47	(Hasegawa et al. 2022, Iwataki et al. 2022). However, research on these effects has been
48	primarily focused on the mass mortalities of commercially important fishes and larger, visually
49	observable organisms.

50 HABs are increasingly reported in previously unaffected regions, yet their impacts on 51 marine ecosystems in these areas are poorly understood (Gobler 2020). The rising frequency, 52 intensity, and geographical spread of HABs in marine ecosystems are a growing global 53 environmental concern. To better comprehend how species involved in HABs disrupt marine 54 ecosystems and form dense blooms, it is essential to clarify the interactions between HAB 55 species and their potential predators. Phytoplankton, including HAB species, are predominantly

56	consumed by zooplankton, with copepods being the primary herbivorous zooplankton group.
57	According to reviews by Turner & Tester (1997) and Turner (2014), the impact of HAB species
58	on copepods varies; some studies have indicated that various copepods can graze on HAB
59	species without noticeable adverse effects, while other findings link exposure to or ingestion of
60	HAB species to negative impacts on copepods, including reduced feeding, growth,
61	development, egg production, and survival. Turner & Tester (1989) found that certain species
62	with in the genus Karenia were harmless to specific copepod species. Conversely, other studies
63	have found Karenia spp. detrimental to different copepod species (e.g., Huntley et al. 1986,
64	Uye & Takamatsu 1990, Breier & Buskey 2007). Variations between studies might be
65	attributable to differences in harmful algal species and their concentrations, fluctuating toxin
66	levels, and varying tolerance to specific toxins among copepod species and populations (Dam
67	2013, Turner 2014). The relationship between HAB species and herbivorous zooplankton is
68	inconsistent, highlighting the need for experiments with coexisting copepods and HAB species
69	to understand their trophic interactions (Turner 2014).
70	To investigate the effects of K. selliformis on copepods, this study conducted survival
71	and grazing experiments with copepods found in the southeastern region of Hokkaido, utilizing

- *K. selliformis* isolated from the 2021 HAB in the same area. Our experimental design and
 methodologies include:
- 74 Survival experiments:

75	We structured these into control and experimental groups to monitor copepod mortality,
76	using the Kaplan–Meier method and Generalized Linear Models to assess the impact of K .
77	selliformis.
78	- Grazing experiments:
79	These were designed to measure ingestion rates and explore the relationship between
80	copepod grazing behavior and algal cell concentrations, contrasting K. selliformis with a non-
81	toxic diatom.
82	
83	Materials and Methods
84	Karenia selliformis culture conditions
85	Karenia selliformis strain Ks-1 was isolated from seawater samples collected from the
86	southeastern coast of Hokkaido, Japan, on 28 September 2021 (42° 56.65'N, 144°26.88'E).
87	The clonal strain was not axenic. All references to K. selliformis within this paper pertain
88	exclusively to this strain. The isolate was cultured in a growth chamber under specific
89	conditions: a temperature of 13°C, a 12:12 hour light:dark photoperiod, salinity of 33.0, and
90	cool white fluorescent lighting at an intensity of 150 μ mol photons m ⁻² s ⁻¹ . The culture medium
91	used was a modified seawater medium (modified SWM-3; hereafter referred to as SWM), as
92	detailed by Yamasaki et al. (2007). For the experiments, K. selliformis cells in their logarithmic
93	growth phase were used. Algal cell concentrations were measured using an optical plastic

94	plankton counter (Matsunami Glass Ind., Ltd., Osaka, Japan). In situations where algal cell
95	concentrations were low (≤ 100 cells mL ⁻¹), a boundary slide glass (Matsunami Glass Ind., Ltd.,
96	Osaka, Japan) was utilized.

98 Survival experiments

99 To assess the impact of *K. selliformis* on copepod survival, we conducted experiments 100 with six copepod species from different taxonomic families: Acartia tumida Willey, 1920, 101 Centropages abdominalis Sato, 1913, Eurytemora herdmani Thompson & Scott, 1897, 102 Metridia pacifica Brodsky, 1950, Neocalanus plumchrus Marukawa, 1921, and Paracalanus 103 parvus Claus, 1863. These species are significant prey for juvenile fishes important to fisheries, 104 including salmon and walleye pollock (Okada & Taniguchi 1971, Nishiyama & Hirano 1985, Nagata et al. 2007, Hirakawa et al. 2019). Zooplankton specimens were collected in 2022 using 105 a plankton net with a 45-cm mouth opening, 335-µm mesh, and 1-L cod-end. Off the 106 107 southeastern coast of Hokkaido aboard the R.V. "Hokko-Maru", the net was towed vertically 108 from a depth of 150 m, while at Kushiro Harbor, Hokkaido, the vertical tow was conducted just above the seafloor at ca. 6 m (Fig. 1, Table 1). After collection, target copepod species were 109 110 immediately sorted from specimens with a large-bore pipette by naked eye or under a 111 stereoscopic microscope, and provided for the subsequent survival experiments.

112	The survival experiments included two control conditions and four experimental
113	conditions. The control group involved copepods reared in 0.8-µm filtered seawater (FSW) or
114	the SWM (see "Karenia selliformis culture conditions"); experimental group exposed copepods
115	to three different K. selliformis cell concentrations (10, 100, and 1000 cells mL ^{-1} ; hereafter
116	referred to as KS10, KS100, and KS1000, respectively), which reflected the densities observed
117	in the field during the 2021 HAB in southeast Hokkaido (Kuroda et al. 2021). Additionally,
118	copepods were reared in a K. selliformis elution (KSE) to examine the effect of extracellular
119	chemical compounds from <i>K. selliformis</i> . KSE was obtained by filtering KS1000 through a 0.2-
120	µm syringe filter (DISMIC-25CS; Advantec, Tokyo, Japan). We used 50-mL plastic culture
121	flasks (Corning, NY, USA) for the experiments, each containing one or more copepod
122	individuals (Table 1). The flasks were incubated in the dark. The incubation temperature was
123	set to the surface temperature when each copepod species was collected (Table 1). Dead
124	copepods were counted at 3, 6, 12, and 24 hours, and then every 24 hours for up to 8 days. A
125	copepod was considered dead if it showed no movement, even when prodded with a soft plastic
126	needle. No water replacements were conducted during the experimental period.
127	Survival curves were derived using the Kaplan-Meier method, with statistical
128	differences analyzed using log-rank pairwise tests (Kaplan & Meier 1958). A generalized linear
129	model (GLM) analysis was conducted to assess the relationship between the median lethal time
130	(LT ₅₀) and conditions, including incubation temperature, copepod species, and treatments with

131	K. selliformis. Incubation temperature was used as a numerical explanatory variable, whereas
132	copepod species and treatments with K. selliformis were categorical explanatory variables. The
133	'bestglm()' function in the <i>bestglm</i> package v. 0.37.3 (McLeod et al. 2020) determined the best
134	subset of variables based on the Akaike Information Criterion (AIC). The GLM assessed the
135	effects of the best subset of variables on LT_{50} , using a Gaussian error distribution with the base
136	R function 'glm()'. All statistical analyses were performed in R v. 4.1.2 (R Core Team 2023)
137	using R Studio v. 2022.02.0+443.
138	To explore grazing on K. selliformis, fecal pellet production was monitored. The
139	presence of fecal pellets was checked almost daily, and species producing fecal pellets were
140	subjected to grazing experiments.
140 141	subjected to grazing experiments.
140 141 142	subjected to grazing experiments. Grazing experiments
140 141 142 143	subjected to grazing experiments. Grazing experiments Grazing experiments were conducted specifically on <i>N. plumchrus</i> , as it was the only
140 141 142 143 144	subjected to grazing experiments. Grazing experiments Grazing experiments were conducted specifically on <i>N. plumchrus</i> , as it was the only species among the copepods that produced fecal pellets during the survival experiments. The
140 141 142 143 144 145	subjected to grazing experiments. Grazing experiments Grazing experiments were conducted specifically on <i>N. plumchrus</i> , as it was the only species among the copepods that produced fecal pellets during the survival experiments. The objective was to determine the relationship between their ingestion rate and algal cell
140 141 142 143 144 145 146	subjected to grazing experiments. Grazing experiments Grazing experiments were conducted specifically on <i>N. plumchrus</i> , as it was the only species among the copepods that produced fecal pellets during the survival experiments. The objective was to determine the relationship between their ingestion rate and algal cell concentration. The non-toxic diatom <i>Bacterosira</i> sp. was used as the control prey. <i>Bacterosira</i>
 140 141 142 143 144 145 146 147 	subjected to grazing experiments. Grazing experiments Grazing experiments were conducted specifically on <i>N. plumchrus</i> , as it was the only species among the copepods that produced fecal pellets during the survival experiments. The objective was to determine the relationship between their ingestion rate and algal cell concentration. The non-toxic diatom <i>Bacterosira</i> sp. was used as the control prey. <i>Bacterosira</i> sp. was isolated off Mombetsu in Hokkaido, Japan, in March 2021 and cultured at 4°C, under

149	µmol photons m ⁻² s ⁻¹ using f/2 medium with a salinity of 33.0. The culture condition for K.
150	selliformis was the same as described in the section "Karenia selliformis culture conditions".
151	Zooplankton specimens were collected from the southern area of the Sea of Okhotsk
152	(45°24.98'N, 145°10.02'E) on 24 August 2022 using the same plankton net as in the survival
153	experiment, aboard the R.V. "Wakataka-Maru". The net was towed vertically from a depth of
154	150 m. Post-collection, N. plumchrus were sorted and reared in a 3-L bottle filled with 0.8-µm
155	filtered seawater. The N. plumchrus sorted for this study were checked to be actively swimming.
156	During the cruise, the bottle was stored in an incubator at 5°C in the dark. In the laboratory,
157	each copepod was individually transferred to its own 50-mL plastic culture flask (Corning, NY,
158	USA), ensuring that each flask contained only one copepod. These flasks were then
159	supplemented with algae at concentrations ranging from 100 to 2000 cells mL ⁻¹ , with each flask
160	dedicated to a single type of algae — either Bacterosira sp. or K. selliformis. For Bacterosira
161	sp., 18 flasks were prepared, and for K. selliformis, 79 flasks were used. In addition to these
162	experimental flasks, ten control flasks without any copepods were also established for each
163	algae type. The experiment was conducted on a plankton wheel, which rotated at ca. 1 rpm at
164	5°C in the dark to promote uniform algal distribution. Due to the plankton wheel's capacity to
165	hold only 20 flasks at a time, the experiment was carried out in six separate runs. Algal
166	concentrations in each flask were measured at the beginning and end of the 24-hour grazing

167 experiment to calculate the ingestion rates, which were determined following the formula168 proposed by Frost (1972):

$$k = \frac{\ln C_t - \ln C_0}{T}$$

$$g = k_{AVG} - \frac{\ln E_t - \ln E_0}{T}$$

171
$$I = \frac{E_0 - E_t}{\ln E_0 - \ln E_t} \times \frac{Vg}{N}$$

172 where k is the algal growth coefficient; g is the grazing coefficient; I is the ingestion rate (cells copepod⁻¹ hour⁻¹); C_0 and C_t are cell concentrations (cells mL⁻¹) in the control flask at 173 the beginning and after 24 hours of the experiment, respectively; k_{AVG} represents the average 174 175 algal growth coefficient, calculated as the mean of k values obtained from the control flasks; E_0 and E_t are cell concentrations (cells mL⁻¹) in the experimental flask at the beginning and 176 end of the 24-hour grazing experiment; T is the duration of the grazing experiment (hours); V177 178 is the volume of seawater in the flask (mL); and N is the number of copepods in the flask. 179 Based on the calculated ingestion rates, a simple linear regression analysis was 180 conducted to investigate the relationship between ingestion rate (I) and initial cell concentration (E_0) for each algal species, *Bacterosira* sp. and *K. selliformis*, using Microsoft Excel for Mac 181 v. 16.81. 182 183

184 Results

185 Effects of Karenia selliformis on copepod survival

186	In the survival experiment, the control group exhibited either a 100% survival rate or
187	a gradual decline for all copepod species, except for Paracalanus parvus (Fig. 1). The survival
188	rate of <i>P. parvus</i> in the control group was below 50% within 24 hours in the SWM condition
189	and within 48 hours in the FSW condition. No significant differences were observed between
190	the survival curves of SWM and FSW for P. parvus (Table 2, Fig. 2). For Centropages
191	abdominalis, Eurytemora herdmani, and Metridia pacifica, the survival rate in all experimental
192	conditions decreased with exposure time, showing significant differences from the control
193	group. For the remaining species, Acartia tumida, Neocalanus plumchrus, and P. parvus, some
194	experimental conditions did not show significant differences in the survival curve from that of
195	the control group. In A. tumida and P. parvus, the survival curve did not differ significantly
196	between the KS10 condition and control group. In N. plumchrus, neither KS10 nor KS100
197	treatments had lethal effects on all individuals, and there were no significant differences in the
198	survival curve from that of the control group. In the KS1000 condition, significant differences
199	in the survival curve were observed for all species compared to that of the control group. Acartia
200	tumida, C. abdominalis, and P. parvus experienced a rapid decline in survival, dropping below
201	10% within the first 24 hours. Conversely, E. herdmani and N. plumchrus showed no immediate
202	impact on survival within the first 24 hours, with a progressive decrease in survival rates
203	thereafter. In the KSE condition, all species experienced reduced survival rates, with survival
204	curves significantly differing from those of the control group.

205	The LT_{50} for each experimental condition was calculated from the survival experiment
206	results (Table 3). The LT_{50} varied widely among species and treatments, ranging from 3 to 218
207	hours. As the concentration of K. selliformis increased, there was a notable decrease in LT_{50}
208	(e.g., for <i>E. herdmani</i> , 218, 171, and 113 hours for KS10, KS100, and KS1000, respectively).
209	The LT ₅₀ of KSE was slightly higher than that of KS1000. The 'bestglm()' function selected
210	both copepod species and treatments with K. selliformis as the best subset of variables,
211	underlining their significant effects on LT ₅₀ (Table 4). The incubation temperature was not a
212	significant factor in the model. The GLM analysis using the 'glm()' function analyzed the
213	relationship between LT_{50} and the best subset of variables (Table 5). Several copepod species
214	showed significant associations with LT ₅₀ , with <i>E. herdmani</i> and <i>N. plumchrus</i> displaying high
215	significance and substantial coefficients. Among the treatments with K. selliformis, KS1000
216	and KSE showed significant negative coefficients.
217	During the survival experiments, only N. plumchrus produced fecal pellets in the KS10
218	and KS100 treatments, whereas other species did not produce any fecal pellets.
219	
220	Grazing rate of Neocalanus plumchrus on Karenia selliformis
221	The grazing experiment focused exclusively on N. plumchrus, as it was the only
222	species that produced fecal pellets during the survival experiments. When feeding on the non-
223	toxic diatom Bacterosira sp., there was a positive correlation between food concentration and

ingestion rate (n = 18, $r^2 = 0.642$, p < 0.001) (Fig. 3). However, this correlation was not observed when *N. plumchrus* fed on *K. selliformis*. Instead, a negative correlation was found between *K. selliformis* concentration and ingestion rate (n = 79, $r^2 = 0.300$, p < 0.001). In the experiments with *Bacterosira* sp., all 18 individuals fed. In contrast, 49.4% of the 79 individuals did not feed in the *K. selliformis* experimental group.

229

```
230 Discussion
```

231 In this study, we examined the survival rates of copepods exposed to the harmful dinoflagellate Karenia selliformis. We observed distinct survival patterns between the control 232 233 group and various experimental conditions, indicating that K. selliformis significantly impacts copepod survival (Table 2, Fig. 2). However, this negative effect varied among the six copepod 234 235 species studied. Specifically, Acartia tumida, Centropages abdominalis, and Paracalanus 236 parvus experienced substantial reductions in survival rates in the KS1000 condition, falling 237 below 10% within the first 24 hours of exposure. For P. parvus, the survival rate fell below 50% in the SWM after 24 hours. The observed reduction in the survival rate in the control group 238 239 may not be primarily due to incubation temperature and starvation, as a previous study has 240 demonstrated survival under similar conditions (7 days at 18°C without feeding; Checkley 241 1980). The reduction in survival rates in our study, particularly during the handling of *P. parvus*, could potentially be attributed to stress induced by net sampling and sorting processes. 242

Although it is difficult to exclude the potential effects of factors other than the influence of *K*. *selliformis*, the fact that the survival rate maintained 100% in the FSW for up to 12 hours, while
it dropped below 10% in the KS1000, clearly indicates a rapid impact of *K*. *selliformis* on the
survival rate of *P. parvus*. In contrast, *Eurytemora herdmani* and *Neocalanus plumchrus*showed no immediate change in survival rates within the first 24 hours but exhibited gradual
declines thereafter.

Previous research on copepod exposure to Karenia species, such as Karenia mikimotoi 249 250 Hansen & Moestrup and Karenia brevis Davis-as reviewed by Turner (2014)-has reported 251 harmful effects on copepod survival, while some studies observed no adverse impacts. The 252 variability in experimental designs, including differences in exposure durations, cell 253 concentrations, and algal strains, makes it challenging to draw conclusive comparisons across 254 studies. Uye & Takamatsu (1990) examined the effects of harmful algae on two copepod 255 species and found different survival patterns between Pseudodiaptomus marinus Sato, 1913 256 and Acartia omorii Bradford, 1976 when exposed to K. mikimotoi, thus highlighting varying responses among copepod species even under similar experimental conditions. 257

Moreover, many previous studies on the effects of HABs on copepod survival have employed relatively short exposure periods, often limited to 24 hours. Turner (2014) has emphasized the importance of extending experimental durations to several days or weeks to accurately capture the impacts of HABs, considering their actual occurrence durations. Our

262	findings demonstrate variability in the tolerance of different copepod species to K. selliformis
263	(Fig. 2), suggesting that short-term experiments might not fully capture the extent of the
264	negative impacts on copepod survival. This study contributes to our understanding of the
265	differential responses of copepod species to HABs and highlights the need for species-specific
266	considerations in assessing the impacts of HABs on marine ecosystems. However, it is
267	important to acknowledge that our experimental design did not include water replacements,
268	potentially leading to an overestimation of mortality rates. The absence of water replacements
269	could result in the accumulation of waste products from organisms and a decline in water
270	quality over time, factors that could independently affect copepod survival. Incorporating
271	periodic water replacements and/or providing non-toxic feed to the control group could enable
272	a more accurate assessment of copepod responses to K. selliformis.
273	In addition to observational data, we used a GLM to quantitatively determine the
274	effects of various factors on the LT_{50} (Tables 4, 5). Examining the model summary, the
275	'bestglm()' function underscored the impact of both the copepod species and treatment with K .
276	selliformis as the best subset of variables on determining LT ₅₀ . The copepod species
277	significantly affected LT ₅₀ ; similarly, the treatment with K. selliformis was a critical factor, as
278	indicated by the F -value of 4.664 and significant p -value (Table 4). The incubation temperature
279	was not included in the best subset of variables, possibly due to multicollinearity. Since the
280	incubation temperature in our experiments was set according to the surface temperature at the

281	collection sites for each copepod species, the parameters might not be uniquely identifiable due
282	to almost complete collinearity between the incubation temperature and copepod species.
283	Therefore, the potential variability in K. selliformis harmfulness at different temperatures
284	cannot be ruled out. Acartia tumida, E. herdmani, and N. plumchrus significantly influenced
285	LT_{50} values; notably, their incubation temperature was set at 5°C, which was lower than that of
286	other species (8-13°C) (Table 1). Takagi et al. (2022) reported that the estimated preferred
287	temperature range for K. selliformis growth is $11-17^{\circ}C$, with an optimum temperature of
288	approximately 14°C. This preferred growth temperature range was derived from analyses of
289	chlorophyll a concentration and sea surface temperature obtained from satellite imagery during
290	the 2021 HABs. A mismatch between the temperature during the survival experiments and the
291	preferred growth temperature for K. selliformis may affect the physiological state of K.
292	selliformis, including harmful substance production. Previous studies have found that the
293	toxicity of Karenia species changes with different culture conditions (Brown et al. 2006,
294	Medhioub et al. 2009, Wang et al. 2019).

Based on the best subset of explanatory variables (copepod species and treatment with *K. selliformis*), the GLM analysis highlighted the significant influence of specific copepod species on LT₅₀ (Table 5). Notably, *N. plumchrus* and *E. herdmani* had highly significant coefficients and *A. tumida* showed a marginally significant coefficient. Coefficient variations between species suggests that there are differences in how susceptible each species is to the

300	effects of K. selliformis. Although we cannot rule out the possibility that differences in
301	temperature may affect the harmfulness of K. selliformis, the observation of different
302	coefficients even among copepod species reared at the same temperature (A. tumida, E.
303	herdmani, and N. plumchrus were reared at 5°C; Table 1) emphasizes the variation in resistance
304	to K. selliformis among copepod species. Moreover, the GLM analysis revealed the importance
305	of treatment with K. selliformis, with KS1000 and KSE significantly influencing LT ₅₀ . Focusing
306	on the cell concentration of K. selliformis, higher cell concentrations of K. selliformis resulted
307	in a stronger impact on LT ₅₀ . This trend suggests that in the HABs of eastern Hokkaido in 2021,
308	especially in areas where K. selliformis cell concentrations were notably high (sometimes
309	exceeding 10 ⁴ cells mL ⁻¹ ; Kuroda et al. 2022), copepod survival may have been severely
310	threatened.
311	In our study, all copepod species exposed to K. selliformis elution (KSE) exhibited
010	

survival curves that significantly differed from those of the control group (Table 2, Fig. 2). The patterns of decline in survival rates for copepods exposed to KSE were similar to those observed in the KS1000 condition. Since KSE was prepared by just removing *K. selliformis* cells from the KS1000, these findings imply that copepod survival decreased even without direct physical contact or ingestion of *K. selliformis*. This points to the possibility of *K. selliformis* releasing harmful substances extracellularly. The phenomenon of extracellular toxin secretion by related species such as *K. mikimotoi* and *K. brevis* has been well established (Pierce & Henry 2008,

319	Prince et al. 2010, Seger & Hallegraeff 2022). Additionally, Tang et al. (2021) identified the
320	extracellular secretion of gymnodimine by K. selliformis isolated in Tunisia.

321	If the K. selliformis in our study indeed released harmful substances extracellularly, it
322	is likely that no additional harmful substances accumulated in the cell-free KSE flasks during
323	the survival experiments. The absence of active K. selliformis cells could result in a slower
324	decline in survival rates and a slightly higher LT ₅₀ for KSE compared to those of the KS1000
325	condition (Table 3, Fig. 2). In regions where HABs of K. selliformis occur at high
326	concentrations (e.g., near the southeastern coast of Hokkaido) where concentrations sometimes
327	exceed 10^4 cells mL ⁻¹ (Kuroda et al. 2021), the harmful substances released into the
328	environment by K. selliformis could have broader ecological implications. These harmful
329	substances may pose risks for other phytoplankton as competitors and higher trophic level
330	organisms that do not typically feed on them, in addition to organisms directly consuming the
331	algae.

Our study did not identify the specific harmful substances involved; notably, different toxin profiles can be produced within the same harmful algal species under varying conditions and strains (Kubis et al. 2023). Therefore, future research should focus on identifying the harmful substances produced by *K. selliformis* isolated from the HAB off the southeastern coast of Hokkaido. Gaining an understanding of these harmful substances and their effects on a range 337 of marine organisms is crucial for a comprehensive assessment of the impact of *K. selliformis*338 blooms on marine ecosystems.

339	During the survival experiment, N. plumchrus was the only copepod species among
340	those tested that did not show a decrease in survival in specific experimental conditions (KS10
341	and KS100) (Fig. 2). In addition, N. plumchrus exhibited the second-highest LT ₅₀ at 108 hours
342	in the KS1000 condition (Table 3). Notably, N. plumchrus was the largest copepod in the study,
343	with a prosome length of ~4 mm, followed by <i>M. pacifica</i> at ~2 mm. The potentially higher
344	resistance of N. plumchrus to K. selliformis compared to that of other copepod species might
345	be attributed to its larger body size, which results in a lower surface-to-volume ratio. This ratio
346	is crucial in determining the sensitivity of an organism to external toxins (Christoffersen 1996).
347	During the survival experiments with KS10 and KS100, N. plumchrus produced fecal
348	pellets, thus indicating ingestion of K. selliformis. To explore this further, we conducted a
349	grazing experiment using Bacterosira sp., (a non-toxic diatom) as the control prey to determine
350	the ingestion rate of N. plumchrus on K. selliformis. Typically, copepod ingestion rate increases
351	with food concentration up to a certain point (Frost 1972). However, the relationship between
352	ingestion rate and algal concentration was different when N. plumchrus was fed K. selliformis
353	compared to that when fed Bacterosira sp. (Fig. 3). With Bacterosira sp., the ingestion rate was
354	positively correlated with algal concentration, and all individuals consumed it. In contrast, the
355	ingestion rate of N. plumchrus did not increase with algal concentration when fed K. selliformis

and showed a negative correlation; approximately half of the individuals did not feed on *K*. *selliformis* at all. This suggests that the ingestion rate of *N. plumchrus* is lower when feeding
on *K. selliformis*, particularly at higher *K. selliformis* concentrations.

359 Xu & Kiørboe (2018) studied the impact of a Tunisian strain of K. selliformis on the feeding behavior of Temora longicornis Müller, 1785 from Øresund, Denmark. They found that 360 361 T. longicornis could graze on K. selliformis but at a reduced rate compared to that when grazing on non-toxic algae, which supports the findings of our study. Neocalanus plumchrus is a 362 363 dominant herbivorous copepod in the subarctic Pacific Ocean and its marginal seas (Kobari & Ikeda 2001). In summer, N. plumchrus (along with other large copepods like Neocalanus 364 365 cristatus Krøyer, 1848, Neocalanus flemingeri Miller, 1988, and Eucalanus bungii Giesbrecht, 1893) can constitute 80–95% of the zooplankton biomass in the surface layer (Ikeda et al. 2004). 366 367 In the western North Pacific, most *N. plumchrus* individuals undergo a large-scale ontogenetic 368 vertical migration and exit the surface waters around August (Tsuda et al. 1999). The absence 369 of these large, toxin-tolerant copepods in the surface layer during autumn may possibly have 370 been advantageous for the bloom development of K. selliformis in southeastern Hokkaido. 371 Although zooplankton grazing cannot terminate an established HAB, it has the potential to 372 inhibit initial bloom development (Turner 2010, 2014). Enhancing our understanding of the 373 interactions between harmful algal species and copepods is crucial in comprehending the 374 mechanisms behind the formation and termination of HABs (Turner 2006).

375	This study explores the influence of the harmful dinoflagellate K. selliformis on the
376	survival and ingestion rates of copepods. The observed significant differences in survival curves
377	between control and experimental group underscore the detrimental effect of K. selliformis on
378	various copepod species. Our findings point to the extracellular release of harmful substances
379	by K. selliformis, highlighting its potential widespread impact on marine organisms in affected
380	areas. These results suggest that K. selliformis could have a considerable impact on the lower
381	trophic levels of the marine ecosystem, particularly in regions experiencing HABs. To fully
382	comprehend the ecological consequences of K. selliformis blooms, further research is necessary
383	to identify the specific harmful substances it produces and to understand their effects on
384	different components of marine ecosystems.
385	
386	Acknowledgments
387	We would like to express our sincere thanks to the captains, officers, and crew of the
388	R/V Hokko-maru and the R/V Wakataka-maru. This study was supported by funds from the
389	Japan Fisheries Research and Education Agency.
390	
391	References
392	Breier CF, Buskey EJ (2007) Effects of the red tide dinoflagellate, Karenia brevis, on grazing

and fecundity in the copepod *Acartia tonsa*. J Plankton Res 29: 115–126.

394	Brown AFM, Dortch Q, Dolah FMV, Leighfield TA, Morrison W, Thessen AE, Steidinger K,
395	Richardson B, Moncreiff CA, Pennock JR (2006) Effect of salinity on the distribution,
396	growth, and toxicity of Karenia spp. Harmful Algae 5: 199–212.
397	Checkley DM (1980) Food limitation of egg production by a marine, planktonic copepod in
398	the sea off southern California. Limnol Oceanogr 25: 991–998.
399	Christoffersen K (1996) Ecological implications of cyanobacterial toxins in aquatic food
400	webs. Phycologia 35: 42–50.
401	Dam HG (2013) Evolutionary adaptation of marine zooplankton to global change. Annu Rev
402	Mar Sci 5: 349–370.
403	Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior
404	of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17: 805-815.
405	Gobler CJ (2020) Climate change and harmful algal blooms: insights and perspective.
406	Harmful Algae 91: 101731.
407	Hasegawa N, Watanabe T, Unuma T, Yokota T, Izumida D, Nakagawa T, Kurokawa T,
408	Takagi S, Azumaya T, Taniuchi Y, Kuroda H, Kitatsuji S, Abe K (2022) Repeated
409	reaching of the harmful algal bloom of Karenia spp. around the Pacific shoreline of
410	Kushiro, eastern Hokkaido, Japan, during autumn 2021. Fish Sci 88: 787–803.
411	Hirakawa K, Kaga T, Sato T, Kasai H (2019) Regional characteristics of zooplankton as food
412	for juvenile chum salmon Oncorhynchus keta in the coastal waters around Hokkaido,

413	with special reference to copepod community structure. Bull Plankton Soc Japan 66: 72-
414	85.
415	Huntley M, Sykes P, Rohan S, Marin V (1986) Chemically-mediated rejection of
416	dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus:
417	mechanism, occurrence and significance. Mar Ecol Prog Ser 28: 105–120.
418	Ikeda T, Kanno Y, Ozaki K, Shinada A (2004) Metabolic rates of epipelagic marine copepods
419	as a function of body mass and temperature. Mar Biol 139: 587–596.
420	Iwataki M, Lum WM, Kuwata K, Takahashi K, Arima D, Kuribayashi T, Kosaka Y,
421	Hasegawa N, Watanabe T, Shikata T, Isada T, Orlova TY, Sakamoto S (2022)
422	Morphological variation and phylogeny of Karenia selliformis (Gymnodiniales,
423	Dinophyceae) in an intensive cold-water algal bloom in eastern Hokkaido, Japan.
424	Harmful Algae 114: 102204.
425	Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am
426	Stat Assoc 53: 457–481.
427	Kobari T, Ikeda T (2001) Ontogenetic vertical migration and life cycle of Neocalanus
428	plumchrus (Crustacea: Copepoda) in the Oyashio region, with notes on regional
429	variations in body sizes. J Plankton Res 23: 287–302.

430	Kubis JAT, Rodríguez F, Rossignoli AE, Riobó P, Sar EA, Sunesen I (2023) Morphological,
431	phylogenetic and toxinological characterization of potentially harmful algal species from
432	the marine coastal waters of Buenos Aires Province (Argentina). Phycol 3: 79–105.
433	Kuroda H, Azumaya T, Setou T, Hasegawa N (2021) Unprecedented outbreak of harmful
434	algae in Pacific coastal waters off southeast Hokkaido, Japan, during late summer 2021
435	after record-breaking marine heatwaves. J Mar Sci Eng 9: 1335.
436	Kuroda H, Taniuchi Y, Watanabe T, Azumaya T, Hasegawa N (2022) Distribution of harmful
437	algae (Karenia spp.) in October 2021 off southeast Hokkaido, Japan. Front Mar Sci 9:
438	841364.
439	McLeod A, Xu C, Lai Y (2020) bestglm: Best subset GLM and regression utilities. R package
440	version 0.37.3, URL https://CRAN.R-project.org/package=bestglm.
441	Medhioub A, Medhioub W, Amzil Z, Sibat M, Bardouil M, Ben Neila I, Mezghani S, Hamza
442	A, Lassus P (2009) Influence of environmental parameters on Karenia selliformis toxin
443	content in culture. Cah Biol Mar 50: 333–342.
444	Nagata M, Miyakoshi Y, Ando D, Fujiwara M, Sawada M, Shimada H, Asami H (2007).
445	Influence of coastal seawater temperature on the distribution and growth of juvenile
446	chum salmon, with recommendations for altered release strategies. Nor Pac Anadr Fish
447	Comm Bull 4: 223–235.

448	Nishiyama T, Hirano K (1985) Prey size and weight relations in larval walleye pollock
449	(Theragra chalcogramina). Bull Plankton Soc Japan 32: 45–59.
450	Okada S, Taniguchi A (1971) Size relationship between salmon juveniles in shore waters and
451	their prey animals. Bull Fac Fish Hokkaido Univ 22: 30–36.
452	Pierce RH, Henry MS (2008) Harmful algal toxins of the Florida red tide (Karenia brevis):
453	natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 17: 623-
454	631.
455	Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of
456	allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae
457	10: 39–48.
458	R Core Team (2023) R: A language and environment for statistical computing. R
459	Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
460	Seger A, Hallegraeff G (2022) Application of clay minerals to remove extracellular
461	ichthyotoxins produced by the dinoflagellates Karlodinium veneficum and Karenia
462	mikimotoi. Harmful Algae 111: 102151.
463	Takagi S, Kuroda H, Hasegawa N, Watanabe T, Unuma T, Taniuchi Y, Yokota T, Izumida D,
464	Nakagawa T, Kurokawa T, Azumaya T (2022) Controlling factors of large-scale harmful
465	algal blooms with Karenia selliformis after record-breaking marine heatwaves. Front Mar
466	Sci 9: 939393.

467	Tang Z, Qiu J, Wang G, Ji Y, Hess P, Li A (2021) Development of an efficient extraction
468	method for harvesting gymnodimine-A from large-scale cultures of Karenia selliformis.
469	Toxins 13: 793.
470	Tsuda A, Saito H, Kasai H (1999) Life histories of Neocalanus flemingeri and Neocalanus
471	plumchrus (Calanoida: Copepoda) in the western subarctic Pacific. Mar Biol 135: 533-
472	544.
473	Turner JT, Tester PA (1989) Zooplankton feeding ecology: copepod during an expatriate red
474	tide. In: Novel phytoplankton blooms: causes and impacts of recurrent brown tides and
475	other unusual blooms (eds Cosper EM, Bricelj VM, Carpenter EJ). Springer-Verlag,
476	Berlin, pp. 359–374.
477	Turner JT, Tester PA (1997) Toxic marine phytoplankton, zooplankton grazers, and pelagic
478	food webs. Limnol Oceanogr 42: 1203–1213.
479	Turner JT (2006) Harmful algae interactions with marine planktonic grazers. In: Ecology of
480	harmful algae (eds Granéli E, Turner JT). Springer-Verlag, Berlin, pp. 259–270.
481	Turner JT (2010) Zooplankton community grazing impact on a bloom of Alexandrium
482	fundyense in the Gulf of Maine. Harmful Algae 9: 578–589.
483	Turner JT (2014) Planktonic marine copepods and harmful algae. Harmful Algae 32: 81–93.
484	Uye S, Takamatsu K (1990) Feeding interactions between planktonic copepods and red-tide
485	flagellates from Japanese coastal waters. Mar Ecol Prog Ser 59: 97–107.
	26

486	Wang H, Niu X, Feng X, Gonçalves RJ, Guan W (2019) Effects of ocean acidification and
487	phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi.
488	Harmful Algae 87: 101621.
489	Xu J, Kiørboe T (2018) Toxic dinoflagellates produce true grazer deterrents. Ecology 99:
490	2240–2249.
491	Yamasaki Y, Nagasoe S, Matsubara T, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007)
492	Allelopathic interactions between the bacillariophyte Skeletonema costatum and the
493	raphidophyte Heterosigma akashiwo. Mar Ecol Prog Ser 339: 83-92.
494	

495 Figures

496 497 "KH" marks the site at Kushiro Harbor (42°58.52'N, 144°22.23'E), while "SEH" denotes the 498 location off the southeastern coast of Hokkaido (42°15.00'N, 145°07.50'E). Zooplankton 499 specimens were collected in 2022 (see Table 1 for details). The gradient colors on the map 500 schematically represent the distribution of Karenia spp. in southeastern Hokkaido as of 9 501 October 2021, according to estimates by Kuroda et al. (2022). Light gray indicates cell concentrations ranging from 10 to 100 cells mL⁻¹, medium gray signifies 100 to 1000 cells mL⁻ 502 ¹, and dark gray marks concentrations exceeding 1000 cells mL⁻¹. Note that zooplankton 503 504 specimens were not collected during the harmful algal bloom event. 505

Fig. 2. Survivorship of copepods exposed to three *Karenia selliformis* (KS) suspensions (10,
100, and 1000 cells mL⁻¹), KS elution (KSE) reflecting extracellular compounds, artificial
seawater (SWM), and 0.8-µm filtered seawater (FSW). Labels are provided at the end points
of plots that overlap throughout to aid in distinguishing these lines.

515 Fig. 3. Ingestion rates of *Neocalanus plumchrus* in grazing experiments conducted with

516 Bacterosira sp. and Karenia selliformis.

518 Tables

519

		Sampling		Survival experiment				
Species	Copepodite stage	Date	Location*	Temperature (°C)	No. of conditions	No. of flasks per condition	Copepods per flask	
Acartia tumida	C6F	22 Apr.	KH	5	5	3	5–6	
Centropages abdominalis	C6F	2 Nov.	KH	12	5	3	1	
Eurytemora herdmani	C6F	24 Mar.	KH	5	6	3	5–7	
Metridia pacifica	C6F	14 Jan.	SEH	8	3	3	5-6	
Neocalanus plunchrus	C5	14 May	SEH	5	6	5	3	
Paracalanus parvus	C6F	13 Oct.	KH	13	6	3	10	

Table 1. Sampling dates and locations for copepods used in the survival experiment and experimental designs.

All sampling was conducted in 2022.

*SEH: off the southeastern coast of Hokkaido (R.V. Hokko-Maru)

KH: Kushiro Harbor, Hokkaido

520

Second		Pairwise comparisons						
Species	Group comparisons	KS1000	KS100	KS10	KSE	SWM	FSW	
Acartia tumida	**	а	b	bc	b	_	с	
Centropages abdominalis	*	а	ab	b	_	с	c	
Eurytemora herdmani	**	а	b	b	ab	c	с	
Metridia pacifica	**	_	а	—	b	c	_	
Neocalanus plumchrus	**	а	b	b	а	b	b	
Paracalanus parvus	**	а	b	с	ab	c	c	

 Table 2.
 Kaplan-Meier survival curve comparisons using log-rank pairwise tests.

p*<0.05; *p*<0.01.

Different letters in the same row indicate significantly different results, with *p*-values adjusted for multiple testing using the Benjamini-Hochberg method (p < 0.05). The symbol '-' indicates no data available for the respective conditions.

Table 3. Median lethal times (LT₅₀, hours) across copepod species and experimental conditions.

	KS10	KS100	KS1000	KSE
Acartia tumida	n. d.	63	12	39
Centropages abdominalis	24	34	6	_
Eurytemora herdmani	218	171	113	145
Metridia pacifica	—	105	_	59
Neocalanus plumchrus	n. d.	n. d.	108	148
Paracalanus parvus	32	8	3	4

'n.d.' indicates that all individuals survived (no dead), and '-' indicates that no data were collected for the corresponding condition.

523

Source	Df	Sum Sq	Mean Sq	<i>F</i> -value	<i>p</i> -value	
Copepod species	5	117349	23470	6.692	0.00338	**
Treatment with K. selliformis	3	49075	16358	4.664	0.02205	*
Residuals	12	42088	3507	_	_	_

 Table 4.
 Best subset of variables determined by 'bestglm()' function based on AIC.

p*<0.05; *p*<0.01

Tethar time.				
Variable	Coefficient	±SE	<i>t</i> -value	<i>p</i> -value
Intercept	86 828	27 645	2 207	0.0207*
(Paracalanus parvus, KS10)	80.838	57.045	2.307	0.0397
Neocalanus plumchrus	202.063	41.877	4.825	0.0004***
Eurytemora herdmani	150.22	41.877	3.587	0.0037**
Acartia tumida	91.468	41.877	2.184	0.0495*
Metridia pacifica	81.863	53.104	1.542	0.1491
Centropages abdominalis	-3.385	45.925	-0.074	0.9425
KS100	-60.314	36.689	-1.644	0.1261
KSE	-112.884	39.187	-2.881	0.0138*
KS1000	-126.452	37.456	-3.376	0.0055**

Table 5. Summary of GLM coefficients for best subset of variables effects on median lethal time.

*p < 0.05; **p < 0.01; ***p < 0.001