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Abstract 

This paper presents empirical methods utilizing recently developed formulas (Kawamata and 

Kobayashi., 2022; Kawamata et al., 2018) to predict the maximum wave forces on near-bed 

structures and wave-induced movement ratios of isolated rocks in random wave trains. The 

methods assume that the maximum wave load occurs when the velocity semi-amplitude defined 

as half the difference between successive negative and positive peaks of the near-bed wave 

orbital velocity is maximized. The empirical formulas for the velocity-waveform parameters at 

the maximum velocity semi-amplitude in a random wave train were derived from the near-bed 

velocities and surface elevations measured in laboratory wave flumes. The laboratory formula 

for the maximum velocity semi-amplitude was reviewed and improved with near-bed wave 

orbital velocities and surface elevations estimated from pressure measurements under a wider 

range of wave conditions in the field. The newly developed formulas for the velocity-waveform 

parameters at velocity semi-amplitude maxima, combined with the previously developed 

formulas, showed reasonable agreement with the maximum wave forces measured on the 

artificial reef models under random waves in a laboratory wave flume as well as with the 

movement ratio of quarry rocks (median mass = 0.40 t) observed in a field test. 

Keywords: Wave orbital velocity; Maximum wave force; Rock movement; Random wave train 
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1. Introduction 

The near-bed velocity waveform yielding the maximum wave load on a seabed object must be 

predicted to assess its stability in coastal water. As a practical approach, the maximum force has 

been assumed to occur under the maximum wave height in a random wave train. The velocity 

waveform based on the linear wave theory or nonlinear periodic wave theories such as Stokes 

fifth order wave theory has normally been used to assess the wave force by utilizing the Morison 

equation, which represents the time-varying force as the sum of the drag force proportional to 

the instantaneous velocity squared and the inertia force proportional to the acceleration of water 

(Sarpkaya and Isaacson, 1981; Sobey, 1990; Gudmestad, 1993; ISO 21650, 2007). In the surf 

zone, the complex wave orbital velocity enforces more simplifying assumptions, viz., (1) the 

inertia force is negligibly small in comparison to drag force and (2) the maximum horizontal 

velocity can be estimated from the height of a depth-limited breaking wave (e.g., Denny, 1995; 

Nott, 1997; Lorang, 2000). However, these assumptions are far from reality, and existing studies 

have neither demonstrated the occurrence of the maximum wave load at the maximum wave 

height nor validated such predictions. 

A more fundamental question pertains to the characteristic properties of the ambient velocity 

toward the maximum hydrodynamic load in individual random waves. Thus far, the maximum 

wave force in a random wave train has been presumed to occur in a wave with the maximum 

peak onshore (defined here as “positive”) horizontal velocity. However, a recent experimental 

study (Kawamata and Kobayashi, 2022) demonstrated that the maximum hydrodynamic 

horizontal force in individual random waves is closely related to the velocity semi-amplitude 

(��), defined as half the difference between the successive negative (���) and positive peak 

horizontal velocities (���), i.e., �� = ���� − ���
/2, rather than to the maximum horizontal 

velocity (normally identical to ���). This finding assisted with the derivation of the following 

empirical formula for the maximum or peak horizontal wave force, 
�: 


� = 12 ������ � , (1) 

where �  is the mass density of water, ��  is the maximum force coefficient, and �  is the 

reference area of the object. ��  is expressed as a function of the Keulegan–Carpenter (KC) 

number, which is defined as 

�� = 2������  , (2) 

where ��� is the period between the negative and positive peak velocities and � is the reference 

width of the object. Eq. (1) can be used to predict the maximum force and is more precise than 

the Morison equation, even for the asymmetric orbital velocities of shoaling and breaking waves 

(Kawamata and Kobayashi, 2022). Furthermore, the highest maximum wave force (
�,���) in a 

random wave train can be reasonably predicted as (Kawamata and Kobayashi, 2022) 
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�,��� = 12 ������∗����∗� (3) 

with 

��∗ = 2��∗���∗�  , (4) 

where the asterisk indicates the value of the “maximum velocity waveform,” defined as the 

individual zero-down-crossing wave of the velocity-time profile with the maximum ��  in a 

random wave train. 

An experimental study yielded a similar finding regarding the stability of isolated quarry rocks 

under waves or waves with currents (Kawamata et al., 2018); the study revealed that the stability 

is more closely related to the maximum value for the velocity semi-amplitude of zero-down-

crossing waves than to the positive peak velocity. This finding caused the development of the 

following practical equations for predicting the probabilistic mobility of isolated quarry rocks 

on a relatively flat bed (Kawamata et al., 2018): 

� = exp$−exp%−0.608�* − 4.17�-., (5) 

with 

* = /7.28 − ln ���∗ �2�∗�345 6 ��∗�74589�345, (6) 

where �  is the probability of the “damage” or “significant move,” defined as the displacement 

of a rock completely away from the initial occupied area in a wave train (refer to Kawamata et 

al. (2018) for a detailed definition); �2�  is the period between the zero up-crossing and the 

immediately subsequent positive peak velocity; �345 = �:45/�;�</=, with :45 and �; denoting 

the median mass and mass density of the rocks, respectively; 745  is the median friction 

coefficient between the rocks and bed, 8 = �;/� − 1; and 9 is the acceleration due to gravity. 

Despite the extremely complex near-bed orbital velocity in random waves, these new equations 

are simple and can perform predictions with reasonable precision. 

The models based on the velocity semi-amplitude may differ markedly from the Morison 

equation and conventional wave force formulas based on the maximum peak velocity, 

particularly at shallow sites where the near-bed velocity profile is strongly skewed (i.e., ��� is 

considerably larger than >���> ). For example, for a coastal rocky site where an asymmetric 

maximum velocity waveform with ���= 3.5 m/s, ���= −1.5 m/s, and �2�= 2.0 s was observed, 

the new formula (Eq. (5)) reasonably explained the test result that only 2 out of 10 quarry rocks with 

an average mass of 2 Mg (or t) moved, while a conventional formula for calculating the minimum 

stable mass of rocks from the maximum velocity alone, yielded a predicted value of 46 t, differing 

considerably from the observed value (Kawamata et al. 2018). 
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Two practical approaches have been proposed to calculate the wave-induced velocity profile 

near the bed in random sea states: one is to calculate the root mean square velocity using a generic 

form of the parametric surface-wave spectrum from significant wave height and peak period 

(Soulsby, 1987; Wiberg and Sherwood, 2008), and the other is to calculate the velocity waveform 

using wave height, wave period, local water depth, and local bed slope (Dibajnia et al., 2001; 

Tajima and Madsen, 2002; Tajima, 2004; Elfrink et al., 2006). Both approaches have been used 

to assess wave energy dissipation and sediment transport, but none has been used to predict 

maximum wave load in random wave trains. As the viewpoint that the maximum wave load on 

seabed objects occurs at the maximum velocity waveform in a random wave train is new and 

unprecedented, a practical method to predict the characteristic properties of the maximum 

velocity waveform (��∗, ���∗ , ���∗ , and �2�∗ ) has not yet been developed.  

This paper presents empirical equations to predict the above velocity properties and develop 

the practical methods required to estimate the maximum horizontal wave force acting on seabed 

objects or the stability of rocks under random waves. Accordingly, accurate measurements of 

near-bed wave orbital velocities under shoaling random waves were recorded in the laboratory 

to develop reliable, empirical equations for the characteristic properties of the maximum velocity 

waveform. Moreover, field measurements of near-bed pressure and velocity were performed to 

review and improve the equations, because the actual wave orbital velocity could be more 

variable and its accurate determination could be challenging owing to the highly complex and 

turbid natural conditions. Ultimately, the prediction methods for the maximum wave force and 

rock stability in random waves were experimentally validated. 

2. Laboratory measurements 

Laboratory measurements of near-bed velocities under random waves were performed at the 

Kamisu Branch, Fisheries Technology Institute (formerly known as the National Research 

Institute of Fisheries Engineering), Kamisu, Ibaraki, Japan. As depicted in Fig. 1, two wave 

flumes were used: one with dimensions of 70 m (length) × 0.7 m (width) × 2.2 m (total depth) 

and a slope of 1:50, and the other with dimensions of 101 × 1 × 2 m and a slope of 1:30. The 

measurement cross-sections were set up at six uniformly spaced depths of 0.3–0.55 m on the 

slope in each wave flume. At each measurement cross-section, a Nortek Vectrino (Nortek, 

Norway) acoustic Doppler velocimeter with a four-beam down-looking probe and a capacitance-

type wave gauge were set up to measure the horizontal velocity 4 cm above the bottom and the 

water surface elevation, respectively. In preliminary experiments, the velocities were measured 

8 cm above the bottom as well. The resultant deviation in ��∗  measurements was negligible 

(ranging from –6% to 6.7% with an average of –0.4%), ensuring that the measured velocity was 

a nearly constant wave orbital velocity within the near-bed layer above the thin wave boundary 

layer. Random waves were generated based on the modified Bretschneider-Mitsuyasu spectrum 
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(Goda, 1988). Nine wave runs were performed with various combinations of incident wave 

heights and periods (Table 1) in each wave flume so that various shapes of nonbreaking, breaking, 

and broken waves would occur at the measurement depths. In each run, the velocities and surface 

elevations were recorded at 50 Hz for more than about 250 individual waves. Thus, 6 (depths) × 

9 (wave runs) × 2 (slopes) = 108 sets of time-series data were obtained for analysis. 

3. Field measurements 

3.1. Measurement locations and methods 

Field measurements of the near-bed velocity and pressure were conducted at three different 

locations—Shiwagi, Hiwasa, and Mashike (Fig. 2), on the rocky coasts of Japan—as listed in Table 

2. The measurement locations and periods were selected to cover a broad range of hydrodynamic 

conditions. 

Shiwagi and Hiwasa are located on the Pacific coast of Shikoku, southwestern Japan. Among the 

three locations, the measurement point off Shiwagi was the deepest (mean water depth: 9.3 m) and 

completely exposed to ocean swells. The measurements that were performed between July 29 and 

November 17, 2015 recorded huge swells generated by two simultaneous typhoons (typhoons 

201511 and 201512; http://agora.ex.nii.ac.jp/digital-typhoon/year/wnp/2015.html.en). The 

measurements off Hiwasa, 8.7 km southwest of Shiwagi, were acquired at the shallowest depth 

(mean depth: 5.3 m) between November 22, 2018, and February 5, 2019, during which local wind-

generated waves occurred occasionally. The average slopes of the seabed between 0 and 50 m 

offshore from the measurement location were 0.03 and 0.05 for Shiwagi and Hiwasa, respectively. 

At these two locations, wave gauges (model WH-501, IO Technic Co., Ltd., Tokyo) were used to 

measure the velocity and pressure at 2 Hz (Shiwagi) and 5 Hz (Hiwasa) for 20 min every hour. The 

wave gauges are essentially bottom-mounted pressure gauges and biaxial electromagnetic current 

meters (ECMs), referred to as PUV gauges. The pressure and velocity sensors were mounted 57 and 

66 cm above the seabed, respectively. 

Mashike is located on the Japan Sea coast of Hokkaido, northern Japan. Although the coastal 

waters are open to the west and are frequently subjected to high waves caused by the western 

seasonal winds during autumn and winter, they have a limited fetch (approximately 400–500 km 

from the west) that produces waves with periods shorter than those at the other two locations. The 

seabed slope surrounding the measurement point was most gentle (approximately 0.02). A wave 

gauge (model WH-503, IO Technic Co., Ltd., Tokyo) equipped with PUV gauges and an upward-

looking ultrasonic wave gauge was placed at a mean water depth of 7.57 m to measure the velocity, 

pressure, and surface elevation at 2 Hz for 20 min every hour between October 9 and November 30, 

2017. However, the velocity measurements were only performed until November 11, 2017, because 

the stainless-steel velocity sensor with a diameter of 15 mm was bent by some collision during a 

heavy wave and stopped functioning. 
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3.2. Data analysis 

The surface wave elevation and consequent orbital velocity near the bottom were calculated using 

the pressure as follows: time-series pressure data were firstly quadratically detrended to eliminate 

the tidal motion and subsequently Fourier-transformed. The i-th Fourier component was converted 

into the corresponding components of elevation and velocity by multiplying the following factors, ��?�@A� and ��B�@A�, respectively, based on the linear wave theory and under the assumption that 

the wave components with frequencies lower than C�DE = 0.04 Hz and higher than the deep-water 

wave limit are negligible: 

��?�@A� = F 1�9 cosh KAℎcosh KAM� for 2πC�DE < @A < Rπ9/ℎ
0                     elsewhere                                (7) 

and 

��B�@A� = ��?�@A�@A cosh KAMBsinh KAℎ  , (8) 

where @A = 2πCA  and KA = 2π/UA  ( CA : the frequency; UA : the wavelength) are the angular 

frequency and wave number, respectively, for each Fourier component; M� and MB are the vertical 

distances from the seabed to the pressure and velocity sensors, respectively; and ℎ is the burst-

mean depth. The lower and upper cut-off frequencies were useful for attaining a stable energy period 

and removing the effect of noise, respectively. KA is related to @A through the linear dispersion 

equation: 

@A� = 9KA tanh KAℎ. (9) 

The time-series of surface elevation and near-bed wave orbital velocity were produced using the 

inverse Fourier transform. The term cosh KAM on the right-hand side of Eqs. (7) and (8) remained 

almost at unity (<1.013) for the field conditions of M� or MB ≤ 0.66 m, h > 3.9 m, and in a major-

wave frequency range (@A = 2π/�A  < 1.26 rad/s or �A  > 5 s), implying that these pressure and 

velocity measurements can be regarded as near-bed values. 

Although the surface elevations and near-bed wave orbital velocities were directly measured 

using an ultrasonic wave gauge and ECMs, respectively, these measurements were frequently 

missing or heavily contaminated with spikes at high wave heights. In this study, the pressure-

estimated surface elevation and wave orbital velocity were validated by comparing the results with 

direct measurements (refer to Appendix A); then, these values were used as the most robust standard 

measures to assess or improve the prediction formulas whose derivations are provided below. 

4. Development of empirical formulas 

4.1. Formula for �X∗   

The formula developed for predicting �X∗  can be expressed as 
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�X∗ = Y�Airy  (10) 

with 

�\D]^ = @;_���2 sinh K;ℎ , (11) 

where Y  is a correction factor to be empirically determined; �\D]^  is the reference velocity 

calculated from the linear wave theory as the near-bed orbital velocity amplitude due to the 

maximum wave height (_���); and @; and K; are the linear wave values for the significant wave 

period (�;) defined by the zero down-crossing method. Although the peak wave period is generally 

used to represent the wave periods for random waves, �; was used to calculate the wavelength (U) 

according to the linear wave theory, because the peak period was discontinuously variable with 

respect to time, whereas �; was stable even for a bimodal wave spectrum. 

The empirical formula for the correction factor Y was derived from regression analysis between 

the ratio Y ≡ ��∗/�\D]^  and possible dimensionless parameters of _���/ℎ , _���/U , _;/U , ℎ/U , _;/ℎ, and Rℎ/9/�;, where _; is the significant wave height defined by the zero down-crossing 

method. Regression analysis using a single explanatory variable based on the accurate laboratory 

data revealed that the correlation factor was the most closely related to _���/ℎ, and its laboratory 

model (Ya�b) was obtained as the nonlinear least-squares regression equation (the standard error of 

the regression (SER) = 0.0477, the adjusted R-squared c�de�  = 0.698, and f = 108; Fig. 3): 

Ya�b = 1 − 0.396 tanh i1.39 j_���ℎ k<.lmn . (12) 

The field data, excluding the low waves (_�5 < 0.4 m, where _�5 is the significant wave height 

defined as four times the standard deviation of the surface elevation) that could bear considerable 

wave reflections and were less significant, exhibited a similar relationship between _���/ℎ and ��∗/�\D]^ on average, but with a large scatter, as shown with colored symbols in Fig. 3. This scatter 

partially resulted from the error due to the estimation from pressure but could be accounted for by 

the parameters other than _���/ℎ. 

The ratio of the wave height at the maximum velocity waveform, _∗, to the maximum wave 

height from the laboratory data is depicted in Fig. 4. Evidently, ��∗ occurred at the maximum or 

near-maximum wave height at deeper depths of _���/ℎ < 0.4; however, the wave height at the 

maximum velocity waveform decreased further from the maximum wave height as _���/ℎ 

increased. This finding implies that ��∗ in the water of finite depth was influenced by the entire 

wave spectrum or _o, rather than by the extreme waves or _���. Multiple linear regression analysis 

examining which parameter could best account for the unexplained variation ��∗/�Ya�b�\D]^� 

consistently revealed that the most significant parameter was _o/U  but that _���/U  was least 

significant (Table 3). Considering a wider range of wave conditions of the field data as well as a 

significant dependence of Y  on _;/U , a prediction equation for the correction factor was 
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reconstructed by fitting the field data as a nonlinear regression model of Y (SER = 0.0509, c�de�  

= 0.490, and f = 4005): 

YpDqad = r1 − 0.471 tanh i1.46 j_���ℎ k<.llns j0.947 + 3.77 _oU k . (13) 

The values of ��∗ predicted using Eqs. (12) and (13) based on the measured values of _���, _;, 

and �;, were compared to the laboratory measurements or field pressure-estimated values (Fig. 5). 

The field model shown in Eq. (13) slightly improved the predictions, and its relative errors were 

almost within ±10% for both the field and laboratory data. 

4.2. Formula for �uu∗  

The formula for ���∗   was obtained by seeking the dimensionless parameter that could best 

account for the variations in the ratio ��� ≡ 2���∗ /�; observed in the laboratory. Consequently, the 

Ursel number, �v = _���U�/ℎ=, was found the most explanatory variable for ���, but it had scatter 

values much higher than one (Fig. 6), which was not expected from the asymmetric wave orbital 

velocity profiles in finite-depth water. As illustrated in Fig. 7, the maximum velocity waveforms 

with larger ��� values did not exhibit sharp increases (thus had lower accelerations) between the 

negative and positive peaks. The accurate prediction of such fluctuations is challenging. For practical 

use in predicting maximum wave forces, however, because the wave forces are smaller for larger ���, the following equation for ���∗  was derived as a conservative value from a nonlinear least-

squares regression analysis based on the data excluding outliers with unexpectedly high ��� (Fig. 

6): 

��� ≡ 2���∗�; = min$1, 0.515%1 + exp�−0.00939�v�-.. (14) 

4.3. Formula for ���∗  and �2�∗  

Unlike ��∗, the variations in ���∗  and �2�∗  could not be fully predicted, because both parameters 

are one-sided extreme variables, which are more prone to fluctuations due to the phase of low-

frequency wave components than ��∗ , which is a two-sided extreme variable. However, these 

parameters are of secondary importance and appear only in the multiplicative form of ���∗ �2�∗  in 

Eq. (6). Thus, the best single-variable model for the ratio �2� ≡ 4���∗ �2�∗ /��\D]^�;� was searched 

for and �2� was found to be the most closely correlated to _���/ℎ, but with large outliers (Fig. 8). 

According to Eqs. (5) and (6), �   increases with decreasing ���∗ �2�∗  , so the following model 

(denoted using a line in Fig. 8) fitting to the lower data points was adopted as a conservative 

threshold of rock stability: 

�2� ≡ 4���∗ �2�∗�\D]^�; = 1 − 0.967 tanh i0.855 j_���ℎ k5.yy=n. (15) 

5. Validation of methods in terms of maximum wave forces and rock stability 
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5.1. Maximum wave forces in laboratory 

Existing laboratory data (Kawamata and Kobayashi, 2022) describing the wave forces acting on 

three differently shaped structures (artificial reef models) placed on the bed were used to examine 

the accuracy of Eq. (3) according to the formulas proposed for ��∗ and ���∗  (i.e., Eqs. (13) and 

(14)), which can predict the maximum horizontal wave force using the random wave properties _���, _;, and �;. Specifically, �� for each structure was determined using an empirical function 

of the KC number based on regular wave tests, and the 
�,��� predictions were consistent with the 

measurements; almost all errors were within ±20% (Fig. 9). 

5.2. Rock stability in field 

To validate Eqs. (5) and (6) to predict the probability of the mobility of isolated rocks under 

waves, a field experiment was conducted with quarry rocks on a relatively flat boulder site near the 

velocity measurement location off Mashike. In total, 10 quarry rocks (R1–R10) with similar masses 

of 0.37–0.43 t and :45  = 0.40 t were selected. Each rock was placed on the ground with its 

maximum surface area oriented downward, and a U-bolt composed of a reinforced steel bar was 

embedded and attached to the top surface of the rock using chemical anchors. The quarry rocks were 

placed on the test site by suspending them from the U-bolt in intervals of approximately 2 m on 

August 29, 2017 (Fig. 10). Significant moves of angular stones would generally involve overturning, 

as observed in the laboratory (Kawamata et al., 2018). Therefore, to determine the instant at which 

the rocks moved significantly, their inclinations were monitored using 10 accelerometers (MSR 145, 

MSR Electronics GmbH, Switzerland). Each accelerometer was encapsulated in a waterproof case, 

covered by a stainless-steel cylindrical container, and attached to the U-bolt on the quarry rock to 

record the three-axis accelerations at 1 min intervals. The measurements were conducted during the 

time period of the pressure measurement shown in Table 2. If the quarry rock overturned, the relative 

direction of the gravitational acceleration in the xyz-coordinates of the accelerometer changed 

considerably. Thus, the change in the relative direction could be obtained using 

γ = arccos X{�0�X{�|� + X}�0�X}�|� + X2�0�X2�|�
~X{��0� + X}��0� + X2��0�~X{��|� + X}��|� + X2��|� , 

(16) 

where ( X{�0� , X}�0� , X2�0� ) and ( X{�|� , X}�|� , X2�|� ) denote the triaxial acceleration 

components recorded at the initial time (| = 0) and at time | , respectively, and γ  is the angle 

between these two vectors. Note that the accelerometers were not specifically oriented with respect 

to the direction of gravity owing to difficulty in adjusting their mounting orientations.  

A quarry rock was regarded as moving or rolling when the deviation between the triaxial vector 

magnitude of acceleration ~X{� + X}� + X2� and 1 G (where 1 G = 9.80665 m/s2) was larger than the 

threshold value set as 0.05 G; otherwise, it was deemed to be still. For convenience, a “still” quarry 

rock was assumed to have overturned (thus significantly moved) when γ  > 45°. However, 
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significant moves cannot be detected based on γ alone because quarry rocks can return with respect 

to the relative direction after rolling. Therefore, the time at which the sum of the changes in the 

following two angles was greater than 45° was used as an additional criterion for detecting 

significant moves: (1) the angle between the triaxial acceleration vector and z-axis and (2) the angle 

between x-axis and the vector projected onto the xy-plane. 

To calculate �  using Eqs. (5) and (6), 745 was determined using the following empirical 

formula (Kawamata et al., 2018): 

745 = tan �45 (17) 

with 

�45 = 32.5 + 10.8exp j−0.23 �345�45 k , (18) 

where �45 is the median friction angle in degrees and �45 is the median surface grain size of the 

seabed. Based on photographic images of the seabed, �45 of the experimental site was determined 

to be 0.238 m (f = 232) as the area-weighted average of the short-axis diameters of the surface 

grains. The �  prediction at time | was obtained as the maximum of the �  values calculated for 

burst data up to time |.  

Fig. 11 shows the temporal variations in _��� and the observed versus predicted �  values 

of the test quarry rocks. The small sample size (f = 10) was responsible for a large deviation 

between the upper and lower 95%-confidence limits for true � , which were estimated based on 

binomial distribution. Despite the large time variation in the wave height, the predictions 

exhibited good overall agreement with the observations (Fig. 11). 

6. Discussion and conclusions 

Eqs. (10), (11), and (13)–(15) are the formulas for the characteristic properties of the 

maximum velocity waveform (i.e., ��∗, ���∗ , and ���∗ �2�∗ ), enabling Eqs. (3) and (5) to be used to 

predict the maximum wave force on near-bed structures and the wave-induced instability of rocks, 

respectively, in random wave trains. The assumption that the maximum wave force in random 

wave trains occurs at the maximum velocity semi-amplitude rather than at the maximum wave 

height is practically valid, even in the surf zone. Although large flow accelerations in the 

maximum velocity waveform could have always resulted in small ���∗   or �2�∗   values, wave 

irregularity could produce unexpectedly large ���∗   or ���∗ �2�∗   values, suggesting that the 

maximum wave force can occur in velocity waveforms with the second or third largest �� value 

and smaller ���  or �2�  values. However, it is challenging to derive the equations for the joint 

prediction of these parameters that will cause the highest maximum wave force. Therefore, for 

simplicity, the equations were modified only for ���∗  and ���∗ �2�∗  by removing the unexpectedly 

large values as outliers to ensure that the collective proposed formulas yield conservative force 
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predictions. Nevertheless, the developed formulas for the maximum wave forces and wave-

induced instability of rocks demonstrated good agreement with the observations. 

The formulas relating the velocity parameters required to predict the maximum wave load in 

random wave trains use _���  as a reference wave height, although the maximum velocity 

waveform mostly occurs at wave heights lower than _��� in water of finite depth. The largest 

value of �� in a wave train undoubtedly depends on the length of the wave record, as does the 

value of _���. In this study, the measurement duration did not cover more than number of waves 

sufficient to determine the maximum wave (normally, more than 250 waves) in all cases; thus, 

the observed maximum velocity waveforms may have been underestimated for longer wave trains. 

Nonetheless, the problem may be minor or solvable, because the developed formulas can be 

adapted to longer durations using the corresponding larger _��� value. 

The developed formulas can be conveniently applied to design practice if the commonly used 

wave parameters, viz., _���, _o, and �; are available. To predict _��� and _o in shallow and 

intermediate-depth waters from offshore waves, the Goda (1975) model may be applicable, which 

predicts the transformation of the wave height distribution due to shoaling and breaking, 

considering the variation in the sea level due to wave setdown and setup as well as surf beat. In 

the surf zone, _��� can be approximated by a breaking-limited (or depth-limited) wave height, 

so that the existing breaker wave height formulas (reviewed by Rattanapitikon and Shibayama, 

2000) may be available. However, because the data used to develop these formulas are mostly 

limited to measurements in intermediate-depth water (1/20 < ℎ/U  < 1/2), their applicability 

needs to be tested in shallow water (ℎ/U < 1/20). 

7. List of symbols 

� reference area of object X{, X}, X2 accelerations in x, y, and z axes �45 median surface grain size of seabed �� maximum force coefficient �����∗�  �� for maximum velocity waveform � reference width of object �345 median nominal diameter of rocks defined as �:45/�;�</= 
� maximum or peak horizontal wave force 
�,��� highest maximum wave force in a random wave train CA frequency of i-th Fourier component C�DE low cut-off frequency for wave motion 9 acceleration due to gravity _∗ wave height at maximum velocity waveform _�5 significant wave height defined as four times the standard deviation of the surface elevation 



13 

 

_; significant wave height defined by zero down-crossing method _��� maximum wave height ℎ mean depth ��  Keulegan–Carpenter number ��∗ ��  for maximum velocity waveform ��?�@A�  conversion factor from pressure to surface elevation for i-th Fourier component ��B�@A�  conversion factor from pressure to velocity for i-th Fourier component KA wave number for i-th Fourier component K; wave number corresponding to �; U wavelength corresponding to �; UA wavelength for i-th Fourier component :45 median mass of rocks f sample size c�de�  adjusted R-squared �  probability of significant move for isolated quarry rocks on a relatively flat bed ��� ratio of 2���∗  to �; �2� ratio of 4���∗ �2�∗  to �\D]^�; 

SER standard error of regression � bed slope �A period of i-th Fourier component ��� peak-to-peak period or period between successive negative and positive peak velocities ���∗  ��� of maximum velocity waveform �; significant wave period defined by zero down-crossing method �2� zero-to-peak period �2�∗  �2� of maximum velocity waveform | time �\D]^ reference velocity calculated from linear wave theory �� velocity semi-amplitude �X∗  �� of maximum velocity waveform ��� positive peak velocities immediately after zero up-crossing ���∗  ��� of maximum velocity waveform ��� negative peak velocity immediately before zero up-crossing �v Ursel number defined as _���U�/ℎ= �� orbital velocity component in principal wave direction �{� , �}�  cross-shore and longshore fluctuating velocities M�, MB vertical distances from seabed to pressure and velocity sensors Y correction factor defined as ��∗/�\D]^ 
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Ya�b, YpDqad Y from laboratory and field models γ change in relative direction of accelerometer 8 submerged specific density of rocks �45 median friction angle in degrees �� principal wave direction 745 median friction coefficient between rocks and seabed � mass density of fluid �; mass density of rocks * dimensionless predictor for �  @A angular frequency of i-th Fourier component @; angular frequency defined as 2π/�; 
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Appendix A. Pressure-estimated vs. measured surface elevations and near-bed orbital 

velocities 

The surface elevation data obtained by direct measurement using an ultrasonic wave gauge could 

be more accurate than those estimated from pressure. In high waves, however, the ultrasonic acoustic 

data were frequently missing or heavily contaminated with spikes, whereas the pressure data always 

appeared very reasonable without any apparent noise. Overall, the pressure-estimated surface 

elevations in moderately high waves demonstrated reasonable agreement with the acoustic 

measurements, despite slight underestimation of the crest height (Fig. A1). Because the pressure-

estimated surface elevation has already been widely used to estimate the wave height and period in 

shallow and intermediate-depth waters, it was employed in this study as the most robust standard 

measure. 

The near-bed wave orbital velocity is a two-dimensional (2D) vector quantity with directional 

spreading, and in nearshore areas it is affected by the reflected waves, whereas the pressure-

estimated wave orbital velocity assumes that the directional spreading and reflection of the wave are 

negligible. However, 2D velocity signals obtained from ECMs were frequently contaminated with 

spikes in rough seas. Thus, the following validation was performed to ascertain the robustness and 

reliability of pressure-estimated wave orbital velocities to determine the single extreme value ��∗ 

in field environments. Firstly, velocity time-series data with any indication of actual velocities faster 

than the measurable limit (3 m/s) were removed from the analysis. Subsequently, the remaining sets 

of time-series data were demeaned and low-pass filtered with a cut-off frequency of 0.33 Hz to 

remove the fluctuations due to turbulence and noise. Secondly, to obtain the wave orbital velocity 

in the direction of wave propagation, the principal wave direction, ��, was defined as the direction 

corresponding to the maximum variance of the velocity components, i.e., 

�� = 12 arctan 2�{� �}��������
�{������ − �}������ , (A1) 

where �� is the angle between the wave incidence and shore normal; �{�  and �}�  are the cross-

shore and longshore fluctuating velocities, respectively; and the overline represents the average 

during each burst. Finally, the orbital velocity component in the principal wave direction, denoted 

by ��, was compared to the pressure-estimated orbital velocities. Despite periodically increasing 

deviation from �� during a burst (Fig. A2), the ��∗ value obtained from the pressure-estimated 

orbital velocities showed overall good agreement with that calculated from �� (Fig. A3), indicating 

that the pressure-estimated ��∗ value can also be used as a robust and reliable estimate of ��∗. 
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Fig. 1. Wave flume dimensions (unit: m) and locations of measurement instruments. Acoustic 

Doppler velocimeters (ADV) and wave gauges (WG) were installed at six measurement points 

on the slope at different depths.  
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Fig. 2. Map of field locations (circled dots) and bathymetry of the surrounding areas. 
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Fig. 3. Variation in Y ≡ ��∗/�\D]^  with _���/ℎ . � : bed slope. The solid curve indicates the 

laboratory model of Eq. (12). 
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Fig. 4. Variation in the ratio of the wave height at the maximum velocity waveform to the 

maximum wave height, _∗/_���, with _���/ℎ. Only data obtained from laboratory experiments 

are shown. 
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Fig. 5. Comparison of �X∗  predictions from laboratory (left; Eq. (12)) and field models (right; Eq. (13)) versus measured (in laboratory) or pressure-

estimated (in field) �X∗ .
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Fig. 6. Variations in ��� with �v. The solid curve corresponds to Eq. (14). 
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Fig. 7. Examples of maximum velocity waveforms with unexpectedly large ���  values. The 

velocity waveforms in dashed-line rectangles are the maximum velocity waveforms.  
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Fig. 8. Variations in �2� with _���/ℎ. The solid curve corresponds to Eq. (15). 
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Fig. 9. Comparison between predicted and measured 
�,��� on three artificial reef models under random waves. Data are from the experimental study 

of Kawamata and Kobayashi (2022).
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Fig. 10. Ten quarry rocks with accelerometers placed at the test site off Mashik
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Fig. 11. Temporal variations in _���, and the observed and predicted movement ratios, � , of quarry rocks in field test. 
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Fig. A1. Example of the comparison between the pressure-estimated and acoustically measured 

surface elevations. Data obtained during a burst measurement period of 20 min are shown only 

partially in time series (upper) but all in scatter plot form (lower). 
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Fig. A2. Example of the comparison between the pressure-estimated orbital velocities and ECM-

measured orbital velocity components in the principal wave direction, ��. Data obtained during 

a burst measurement period of 20 min are shown only partially in time series (upper) but all in 

scatter plot form (lower). 
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Fig. A3. Comparison between pressure-estimated �X∗  and �X∗  based on ECM-measured ��. The 

solid line indicates perfect agreement between them, and the upper and lower broken lines 

represent ±20% error limits. 
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Table 1 

Experimental conditions for laboratory measurements of near-bed wave orbital velocity and 

surface elevation 

a_;,5: incident offshore significant wave height. 

b�;,5: incident offshore significant wave period. 
cU: wavelength corresponding to the significant wave period. 

  

Run s _;,5a
 

(m) 

�;,5b
 

(s) 

No. of 

waves 

Wave conditions at measurement depths 

ℎ/Uc
 _;/ℎ _���/ℎ 

S50T20H100 1/50 0.100 1.98 367–416 0.092–0.130 0.172–0.320 0.284–0.565 

S50T20H150 1/50 0.151 1.98 359–407 0.092–0.132 0.266–0.487 0.506–0.786 

S50T20H200 1/50 0.201 2.01 359–384 0.092–0.130 0.365–0.593 0.629–0.831 

S50T25H100 1/50 0.100 2.54 308–350 0.078–0.102 0.186–0.344 0.317–0.647 

S50T25H150 1/50 0.149 2.51 312–353 0.082–0.102 0.288–0.513 0.511–0.834 

S50T25H200 1/50 0.200 2.53 313–332 0.082–0.105 0.403–0.646 0.717–0.942 

S50T30H100 1/50 0.101 3.04 274–308 0.067–0.081 0.204–0.416 0.347–0.770 

S50T30H150 1/50 0.148 3.03 274–299 0.067–0.081 0.316–0.579 0.562–0.901 

S50T30H200 1/50 0.198 3.06 261–296 0.066–0.084 0.438–0.638 0.725–0.969 

S30T20H100 1/30 0.112 2.00 340–353 0.094–0.130 0.188–0.395 0.339–0.679 

S30T20H150 1/30 0.176 2.02 339–353 0.093–0.130 0.297–0.620 0.503–0.836 

S30T20H200 1/30 0.233 2.03 329–344 0.090–0.130 0.406–0.702 0.691–0.896 

S30T25H100 1/30 0.116 2.54 280–289 0.070–0.098 0.209–0.468 0.321–0.845 

S30T25H150 1/30 0.162 2.56 273–286 0.072–0.099 0.295–0.674 0.448–0.929 

S30T25H200 1/30 0.208 2.48 275–297 0.074–0.103 0.388–0.764 0.591–0.952 

S30T30H100 1/30 0.119 3.08 235–250 0.062–0.081 0.226–0.546 0.309–0.878 

S30T30H150 1/30 0.161 2.97 242–258 0.064–0.085 0.308–0.723 0.433–0.944 

S30T30H200 1/30 0.214 3.00 242–251 0.063–0.085 0.422–0.820 0.606–0.974 
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Table 2 

Summary of wave field measurements 

Location 

name 

Latitude and 

longitude 

Measurement 

period 

ℎ (m) Mean 

slope 

No. of 

waves
a
 

ℎ/Ub
 _;/U _���/ℎ 

Shiwagi 33°46.95′N, 

134°37.21′E 

29 July–17 

Nov. 2015 

7.7–10.5 0.033 88–259 0.065–0.290 0.0036–0.056 0.063–0.951 

Hiwasa 33°44.19′N, 

134°32.66′E 

22 Nov. 2018–

5 Feb. 2019 

3.9–6.1 0.060 120–282 0.046–0.184 0.0023–0.0351 0.063–0.579 

Mashike 43°50.91′N, 

141°30.03′E 

9 Oct.–30 Nov. 

2017 

7.1–8.3 0.019 123–339 0.084–0.379 0.0069–0.0880 0.063–1.117 

a Number of zero-down-crossing waves during a burst. 

b U: wavelength corresponding to the significant wave period. 
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Table 3 

Standardized partial regression coefficients from a multiple regression of relative error ��∗/�Ya�b�\D]^� 

on possible parameters other than _���/ℎ. The regressions were performed using field data (n = 4005) 

of _�5 > 0.4 m. The parameters are presented in descending order of magnitude. 

 
 

Parameter 
Standardized partial 

regression coefficient _o/U  2.167 Rℎ/9/�o  –1.482 ℎ/U  1.196 _o/ℎ –0.900 _���/U –0.886 


