

Confirmation of Neoporphyra cf. dentata on Shikinejima, Izu Islands, southcentral Japan, and comparison with co-occurring Neoporphyra haitanensis

メタデータ	言語: English
	出版者:
	公開日: 2024-07-19
	キーワード (Ja):
	キーワード (En):
	作成者: オカモト, ミク, イケウラ, アイリ, 玉城, 泉也,
	二羽, 恭介
	メールアドレス:
	所属: 東京海洋大学, 東京海洋大学, 水産研究・教育機構,
	東京海洋大学
URL	https://fra.repo.nii.ac.jp/records/2010270

1	Confirmation of <i>Neoporphyra</i> cf. <i>dentata</i> on Shikinejima, Izu Islands, southcentral
2	Japan, and comparison with co-occurring Neoporphyra haitanensis
3	
4	
5	Miku Okamoto, ¹ Airi Ikeura, ¹ Motoya Tamaki ² and Kyosuke Niwa ^{1*}
6	
7	
8	
9	¹ Department of Marine Biosciences, Tokyo University of Marine Science and Technology,
10	Tokyo, 108-8477, Japan
11	
12	² Yaeyama Field Station, Fisheries Technology Institute, Japan Fisheries Research and
13	Education Agency, 148 Fukai-Ota, Okinawa, 907-0451, Japan
14	
15	
16	Running title: Confirmation of Neoporphyra cf. dentata
17	
18	
19	
20	
21	*To whom correspondence should be addressed.
22	Email: kniwa00@kaiyodai.ac.jp
23	

24 SUMMARY

The Izu Islands of southcentral Japan are thought to fall within the distribution range of 25 26 Neoporphyra dentata. However, the gametophytic blades of Bangiales collected from 27 Shikinejima and Hachijojima, Izu Islands, were identified as Neoporphyra haitanensis in 28 our previous study. Thus, it became uncertain whether N. dentata is distributed in Izu 29 Islands, including Shikinejima. To clarify whether N. dentata grows on Shikinejima, we 30 conducted a further distribution survey of N. dentata on the island. The morphological 31 features of the blade samples collected from an additional sampling site on Shikinejima 32 were more similar to those of N. dentata than to those of N. haitanensis: the blade thickness 33 and the division formula of spermatangia resembled those of the former species rather than 34 the latter species. However, the division formula of zygotosporangia was different from 35 those of either species. The phylogenetic analyses of the *rbc*L gene indicated that the 36 samples were resolved in a clade including N. dentata collected from Shirahama, Chiba 37 Prefecture, and Enoshima, Kanagawa Prefecture, Honshu, Japan. The p-distances of the 38 chloroplast rbcL gene and nuclear 18S rRNA also supported identification of the samples as 39 N. dentata. The results demonstrated that N. dentata is also distributed on Shikinejima with 40 co-occurring N. haitanensis, and that the island materials of the two species were 41 genetically different from other materials of the two species, respectively.

- 42
- 43
- Key words: bladed Bangiales, molecular phylogeny, *Neoporphyra dentata*, *rbc*L, taxonomy
 45

46 **INTRODUCTION**

47

Until 2011, the bladed Bangiales were composed of a single genus, Porphyra. However, 48 Sutherland et al. (2011) divided the genus into eight genera based on molecular 49 phylogenetic analysis, and then Sánchez et al. (2014) added a new genus. Furthermore, 50 Yang et al. (2020) proposed a revision of the genus Pyropia in bladed Bangiales to six 51 genera, including four new genera and a resurrected genus. Consequently, the bladed 52 Bangiales is now divided into 14 genera, and molecular phylogenetic studies have revealed 53 surprisingly high biodiversity in the bladed Bangiales. Recently, Zuccarello et al. 54 (2022) proposed that newly established genera should be restored to *Pyropia* because of the 55 low confidence of branches in phylogenetic analyses. However, the scientific names in the 56 present study follow Yang et al. (2020).

57 In Japan, 29 species of bladed Bangiales are distributed as reported in Yoshida et al. 58 (2015). However, new species, cryptic species and species newly recorded from Japan have 59 been discovered in bladed Bangiales based on detailed morphological observations and 60 molecular analysis, and further genetic diversity in Japan has also been revealed (Niwa et al. 61 2014, Abe et al. 2021, Sano et al. 2021). Although previously reported from Japan by 62 Sutherland et al. (2011), Neoporphyra haitanensis was recently recorded from Shikinejima 63 and Hachijojima, Izu Islands, Japan (Sano et al. 2021), islands thought to be inhabited by N. 64 dentata, a morphologically similar species (Okamura 1930, Segawa 1936, Takahashi et al. 65 2015). Thus, Sano et al. (2021) questioned whether N. dentata even occurred on these 66 islands.

67 Although the type locality of *N. dentata* is Amakusa, western Kyushu (Kjellman 1897), 68 there are no papers using the samples based on detailed morphological observations and 69 molecular analyses. On the other hand, Sutherland et al. (2011) carried out molecular

phylogenetic analyses using N. dentata collected from Shirahama, Chiba Prefecture, on the 70 71 Pacific coast of Honshu. In the present study, we investigated whether N. dentata (sensu Sutherland et al. 2011) is distributed on Shikinejima, Izu Islands, based on detailed 72 73 morphological observations and molecular analyses using the sequence data of Sutherland 74 et al (2011). However, since the molecular data for N. dentata were not obtained from 75 samples collected from the type locality, it is uncertain that the species is authentic N. 76 dentata. Thus, the species identified by Sutherland et al. (2011) and the present study is 77 called *Neoporphyra* cf. *dentata*.

78

79 MATERIALS AND METHODS

80 Morphological observation and isolation of the conchocelis strain

81 Gametophytic blades of Bangiales were collected from site 1 on Shikinejima in February 82 2020 (Fig. 1a and b). They grew in the high intertidal zone of the rocky shore (Fig. 1c, d). 83 Site 1 was different from a site of the Neoporphyra haitanensis habitat (site 2 in Fig. 1b) 84 reported by Sano et al. (2021). The collected blades were transported in a cool box to our 85 laboratory. The collections were wiped with paper towels and stored at -30 °C. After 86 thawing, some of the blades were spread on paper and immediately photographed. For 87 molecular identification, a blade piece (approximately 2-3 cm²) was cut from each blade 88 and used for DNA extraction. Morphological observation was conducted using the blade 89 samples identified by 77 bp of the RUBISCO spacer region (see below). For anatomical 90 observation, blade sections were made by hand using a razor blade. In addition, some of the 91 blades after defrosting were used to isolate the conchocelis (filamentous thalli) strain, 92 according to the procedures of Niwa et al. (2005).

94 Molecular analyses and phylogenetic analyses

95	Total DNA was extracted using the ISOPLANT II kit (Nippon Gene, Tokyo, Japan)
96	following the method of Niwa et al. (2005). The chloroplast RUBISCO spacer region, the
97	rbcL gene, and the nuclear V9 region of 18S rRNA were amplified with primer pairs from
98	Sano et al. (2020), Hanyuda et al. (2004), and Yang et al. (2020), respectively. For sequence
99	analysis of the <i>rbc</i> L gene, two additional primers, Rh1-2 and LS1-2, were also used, as
100	previously described (Niwa et al. 2008). The nucleotide sequences were determined by a
101	DNA sequencing service (FASMAC, Atsugi, Japan). In addition, we determined the <i>rbc</i> L
102	and V9 sequences of a blade (SND-M2) collected from site 2 in a previous study (Sano et al.
103	2021), because the RUBISCO spacer sequences of the blade were different from those of
104	the N. haitanensis blades in the previous study. In each region, highly homologous
105	sequences were investigated by BLAST search. The determined sequences have been
106	deposited in GenBank/EMBL/DDBJ. The accession numbers of the RUBISCO spacer
107	region, the <i>rbc</i> L gene, and the V9 region are described as follows.
108	RUBISCO spacer: the blade from site 1, LC616360; the blade from site 2, LC616361. <i>rbc</i> L
109	gene: the blade from site 1, LC616364; the blade from site 2, LC616365. V9: the blade
110	from site 1, LC616368; the blade from site 2, LC616369.
111	Phylogenetic analyses of the <i>rbc</i> L gene (1,230 bp) were carried out using
112	maximum-likelihood (ML) and Bayesian inference (BI) methods. The determined
113	sequences and published sequence data of bladed Bangiales were used for the phylogenetic
114	analyses (Table S1). The ML tree was constructed using MEGA XI (Kumar et al. 2018)
115	with the Tamura-Nei model. Bootstrap analysis was performed using 1,000 pseudoreplicates.
116	BI analyses were run using MrBayes v. 3.2.7 (Ronquist et al. 2012) with the GTR+I+G
117	model selected for each gene, and data were partitioned by codon position. Analyses were

started from random trees and were run with four chains of Markov chain Monte Carlo
(MCMC) iterations. Trees were sampled every 100 generations for 100 000 generations, and
the results verified that the average standard deviation of split frequencies (ASDSF) was
<0.01 and that potential scale reduction factor (PSRF) values were stable at approximately
1.00. The first 25% of trees sampled were discarded as 'burn-in', and posterior probability
values were calculated from the remaining trees. The *p*-distances of *rbc*L and V9 were also
calculated from the determined and published sequences using MEGA XI.

125

126 **RESULTS**

127 Morphological observations

Some of the gametophytic blades from site 1 and site 2 are shown in Fig. 2. The blade shape was lanceolate or linear-lanceolate. The conchocelis SND-2 strain was established from the

130 third blade from the left in Fig. 2. The shape of the basal portion was cordate or rounded.

131 The blade color was light brownish purple, light reddish brown or dark purplish red.

132 Herbarium specimens were deposited in the Museum of Marine Science, Tokyo University

133 of Marine Science and Technology: the specimen numbers are MTUF-43303 and

134 MTUF-43304.

Microscopic observations were conducted using blades from site 1. Microscopic denticulae were observed along the blade margin (Fig. 3a). Each vegetative cell possessed a single chloroplast (Fig. 3b). In sectional view, the vegetative portions were monostromatic, and the shape of the vegetative cells was quadrate with rounded corners (Fig. 3c). The blade thickness in the central vegetative portions ranged from approximately 41 to 57 μ m. The blades were dioecious. The division formula of spermatangia was presumed to be 128 (a/4, b/4, c/8) (Fig. 3d–g), although the division in the sectional view was not always complete. The surface view in the division formula of zygotosporangia was presumed to be a/4 and
b/2 (Fig. 3h) or a/4 and b/4, although the division (a/4, b/4) was not always complete (Fig.
3i and j). The sectional cell number c in the division formula for most samples was 2 (Fig.
3k); however, c values up to 4 were observed (Fig. 31 and m). Thus, the division formula of
zygotosporangia was 16–64 (a/4, b/2–4, c/2–4) (Fig. 3h–m).

147

148 Molecular analyses

149 The nucleotide sequences (77 bp) of the RUBISCO spacer regions were determined from 150 approximately ten samples, including the conchocelis SND-2 strains, all of which originated 151 from site 1. Their sequences were identical to each other, and the sequence haplotype was 152 first detected in the present study. The RUBISCO spacer sequences of SND-M2 that were 153 collected from site 2 were different from those of site 1 samples by 1 bp. In addition, the difference between the sequences of SND-2 and Porphyra sp. DE001 (AB287971) that was 154 155 collected from Enoshima (Fig. 1a) in Kanagawa Prefecture was 2 bp, whereas the difference 156 between the sequences of SND-M2 and Porphyra sp. DE001 was 1 bp. 157 The nucleotide sequences of the *rbc*L gene and the V9 region were determined from

158 SND-2 (the sample from site 1) and SND-M2 (the sample from site 2). The number of

159 differences and *p*-distances between the *rbc*L sequences of the two samples and the related

160 species are shown in Table 1. The *rbc*L sequences of SND-2 and SND-M2 differed by 11 bp.

161 The difference between the *rbc*L sequences of SND-2 and *N*. cf. *dentata* (Sutherland et al.

162 2011, HQ687520) that was collected from Shirahama (Fig. 1a) in Chiba Prefecture was 11

bp, whereas the difference between SND-M2 and N. cf. dentata was 8 bp. Thus, the

164 p-distances between all samples were < 1.0% (Table 1). In addition, the difference between

165 the *rbc*L sequences of *N*. cf. *dentata* from Shirahama and *Porphyra* sp. DE001 (AB287971)

from Enoshima was 1 bp. The phylogenetic tree of the *rbc*L gene using the maximum
likelihood (ML) method and Bayesian inference (BI) method is presented in Fig. 4. The two
samples, SND-2 from site 1 and SND-M2 from site 2, were resolved in a clade including *N*.
cf. *dentata* and *Porphyra* sp. DE001 with high bootstrap.
The number of differences and *p*-distances between the V9 sequences of the two
samples (SND-2 and SND-M2) and the related species are shown in Table 2. The V9
sequences of SND-2 and SND-M2 differed by 1 bp. The difference between the sequences

173 of SND-2 and N. cf. dentata was 1 bp, whereas the sequences of SND-M2 were identical to

those of *N*. cf. *dentata* (Sutherland et al. 2011, HQ687588) and *Porphyra* sp. DN002

175 (AB293534), which were collected from Shirahama and Enoshima, respectively (Table 2).

176

177 **DISCUSSION**

178 Since the RUBISCO spacer sequences of the examined blades that were collected from site 179 1 on Shikinejima were identical to each other, it was inferred that the population of the 180 bladed Bangiales was composed of the same species. External and anatomical features of 181 the blades were similar to those of N. dentata and N. haitanensis (Kjellman 1897; Ueda 182 1932; Okamura 1936; Tanaka 1952; Chang & Zheng 1960; Fukuhara 1968; Kim 1999; Sano 183 et al. 2021). We compared these features in Table 3. The features of *N. dentata* and *N.* 184 haitanensis were quite similar: both species had microscopic denticulae, and both were 185 dioecious, although some monoecious blades consisting of male and female sectors were 186 also observed in both species (Chang & Zheng 1960; Kurogi & Yamada 1986). Moreover, 187 the division formula of the reproductive cells of N. dentata was also similar to that of N. 188 haitanensis. However, blade thickness in the vegetative portion of N. dentata was thinner 189 than that of N. haitanensis: the former was 30-58 µm (Ueda 1932; Okamura 1936; Tanaka

1952), whereas the latter was 55-95 um. The thickness of the blades collected from site 1 on

191 Shikinejima was 41-57 µm. These results indicated that the samples from site 1 were more

192 similar to *N. dentata* than *N. haitanensis*.

190

193 The division formula of spermatangia of *N*. *dentata* and *N*. *haitanensis* was mostly the 194 same number (Ueda 1932; Okamura 1936; Tanaka 1952; Chang & Zheng 1960; Fukuhara 195 1968), and in N. haitanensis, a different cell number was also observed (Chang & Zheng 196 1960), as previously reported in other species of the bladed Bangiales (Lindstrom & Cole 197 1992). In the present study, c/16 of the sectional view, which was reported in N. haitanensis 198 (Chang & Zheng 1960), was not observed in the examined samples, indicating that their 199 division formula of spermatangia was identical to that of N. dentata. On the other hand, the 200 division formula of zygotosporangia of *N. dentata* was 16 (a/2, b/2, c/4) (Ueda 1932; 201 Okamura 1936; Tanaka 1952; Fukuhara 1968), whereas that of N. haitanensis was 8-32 202 (a/2-4, b/2, C/2-4) (Chang & Zheng 1960; Sano et al. 2021). In the examined blades, the 203 surface view of the division formula was mostly a/4 and b/2 and rarely a/4 and b/4. 204 Additionally, the sectional view of the division formula was mostly c/2 and rarely c/4, 205 although the sectional view of the division formula of N. dentata was c/4. These results 206 indicated that the division formula of zygotosporangia of the examined blades was different 207 from those of N. dentata and N. haitanensis. Therefore, although the division formula of 208 zygotosporangia was different between the examined samples, morphological and 209 anatomical features of the blades that were collected from site 1 in Shikinejima were more 210 similar to N. dentata than to N. haitanensis. 211 The phylogenetic analysis demonstrated that SND-2 and SND-M2 were resolved in a

clade including N. cf. dentata (HQ687520) from Shirahama. Porphyra sp. DE001 (thus, it

213 was identified as N. cf. dentata DE001) from Enoshima was also included in the clade,

214 although the RUBISCO spacer sequences of SND-2, SND-M2 and Porphyra sp. DE001 215 were different from each other. All *p*-distances between SND-2, SND-M2, and *N*. cf. 216 dentata were < 0.9% (8-11 bp). In northwestern Atlantic Porphyra species, very little 217 intraspecific variations in *rbc*L sequences were confirmed to be < 0.1% (Klein et al. 2003). 218 Lindstrom and Fredericq (2003) showed that the intraspecific sequence divergences for 219 approximately half of the species in the bladed Bangiales, which were examined by them, 220 ranged from 0.0 to 0.5%. On the other hand, Milstein et al. (2015) reported that interspecific 221 divergences in the bladed Bangiales were > 1.9% for the *rbcL* gene, despite exhibiting some 222 exceptions. In N. haitanensis, which is a member of the same genus of N. dentata, the 223 intraspecific divergences were confirmed to be < 1.3% (Sano et al. 2021). Therefore, 224 although the sequence variations between SND-2, SND-M2, and N. cf. dentata were 225 slightly higher than those expected for conspecies compared to the former two studies 226 (Klein et al. 2003; Lindstrom and Fredericg 2003), SND-2 and SND-M2 from Shikinejima 227 were presumed to be N. cf. dentata based on phylogenetic analysis and the p-distance of the 228 *rbcL* gene. Additionally, it was also presumed that N. cf. *dentata* possessed 3 haplotypes of 229 RUBISCO spacer sequences from the above-mentioned results. 230 In the V9 region of the 18S rDNA, the *p*-distance between SND-2 and *N*. cf. dentata 231 was 0.3% (1 bp), whereas the distance between SND-M2 and N. cf. dentata was 0% 232 because the sequences were identical. According to a previous study, interspecific 233 divergences of 18S rRNA in bladed Bangiales were > 1.1% (Milstein et al. 2015). On the 234 other hand, the intraspecific divergences of 18S rRNA in N. haitanensis were confirmed to 235 be < 0.4% (Sano et al. 2021). The results of the nuclear DNA region also identified SND-2 236 from site 1 and SND-M2 from site 2 as N. cf. dentata. Although Porphyra sp. DN002 in 237 Table 2 was different from the specimen *Porphyra* sp. DE001, the *rbc*L sequences of which

were determined, Porphyra sp. DN002 was also collected from Enoshima. Because the V9 239 sequences of the specimen were identical to those of N. cf. dentata, Porphyra sp. DN002 240 could also be identified as N. cf. dentata. 241 As mentioned above, the results of detailed morphological observations and molecular 242 analyses of chloroplast and nuclear DNA regions identified the blades and conchocelis of 243 strain SND-2 from site 1 and the blade of SND-M2 from site 2 as N. cf. dentata; these 244 samples were genetically different from those from Shirahama and Enoshima in Honshu, 245 Japan. Thus, in addition to N. haitanensis, it was shown that N. cf. dentata is also 246 distributed on Shikinejima, Izu Islands, southcentral Japan. However, to clarify that these 247 samples are N. dentata (see Introduction), further morphological and molecular studies 248 using the samples collected from the type locality of *N*. *dentata* are needed. 249 In Japan, most cultivated strains of nori are Neopyropia vezoensis f. narawaensis 250 (Miura 1984; Niwa & Aruga 2006), and the species is considered a northern species in 251 Japan (Miura 1988). However, since nori cultivation has been damaged due to the influence 252 of high seawater temperatures caused by global warming (Niwa 2020), it has become 253 important to establish and collect conchocelis strains of southern species as potential 254 breeding materials. Recently, the strains of the southern species, N. haitanensis and N. kitoi, 255 have been isolated (Sano et al. 2021; Niwa et al. 2022). Despite faster maturity, the later 256 strain has potential as a new cultivated species with high growth and high temperature 257 tolerance as determined from the results of laboratory culture and experimental cultivation 258 on a nori farm (Niwa et al. 2022, 2023). Thus, it is expected that the isolated conchocelis 259 strain SND-2 of N. cf. dentata also has the potential to be used as breeding material for the 260 development of new cultivars with high temperature tolerance.

261

262 ACKNOWLEDGMENTS

- 263 We thank the members of our laboratory for performing the field and laboratory work. We
- also thank anonymous reviewers for their valuable comments and advice to improve the
- 265 manuscript. This work was supported by JSPS KAKENHI Grant Number 22H02418 to K.

266 N.

268 **REFERENCES**

- 269 Abe, M., Kikuchi, N., Tamaki, M. et al. 2021. Neoporphyra kitoi sp. nov. (Bangiales,
- 270 Rhodophyta) from Japan, with new blades arising from rhizoidal cells. *Phycol*.
- 271 *Res.* **69**: 237–45.
- Chang, T. J. and Zheng, B. F. 1960. *Porphyra haitanensis*, a new species of *Porphyra* from
 Fukien. *Acta Bot. Sin.* 9: 32–6 (in Chinese).
- Fukuhara, E. 1968. Studies on the taxonomy and ecology of *Porphyra* of Hokkaido and its
 adjacent waters. *Bull. Hokkaido Reg. Fish. Res. Lab.* 34: 40–99 (in Japanese).
- 276 Hanyuda, T., Suzawa, Y., Suzawa, T. et al. 2004. Biogeography and taxonomy
- of *Batrachospermum helminthosum* (Batrachospermales, Rhodophyta) in Japan
 inferred from *rbcL* gene sequences. *J. Phycol.* 40: 581–8.
- 279 Kim, N. G. 1999. Culture studies of *Porphyra dentata* and *Porphyra pseudolinearis*
- 280 (Bangiales, Rhodophyta), two dioecious species from Korea. *Hydrobiologia*. 398/399:
 281 127–35.
- Kjellman, F. R. 1897. Japanska arter af slägtet *Porphyra. Bihang til Kongliga Svenska Vetenskaps-Akademiens Handlingar.* 23: 1–34 (in Swedish).
- 284 Klein, A. S., Mathieson, A. C., Neefus, C. D. et al. 2003. Identification of north-western
- Atlantic *Porphyra* (Bangiaceae, Bangiales) based on sequence variation in nuclear
 SSU and plastid *rbcL* genes. *Phycologia* 42: 109–22.
- 287 Koh, Y. H. and Kim, M. S. 2018. DNA barcoding reveals cryptic diversity of economic red
- algae, *Pyropia* (Bangiales, Rhodophyta): description of novel species from Korea. J *Appl. Phycol.* 30: 3425–34.
- 290 Kucera, H. and Saunders, G. W. 2012. A survey of Bangiales (Rhodophyta) based on
- 291 multiple molecular markers reveals cryptic diversity. J. Phycol. 48: 869–82.

292	Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular
293	evolutionary genetics analysis across computing platforms. Mol. Bio. Evol. 35:
294	1547–9.
295	Kurogi, M. and Yamada, I. 1986. New knowledge obtained by the observation on the
296	original specimens of F. R. Kjellman: Japanska arter af slägtet Porphyra. Jap. J.
297	Phycol. 34: 62. (in Japanese).
298	Lindstrom, S. C. and Cole, K. M. 1992. The Porphyra lanceolata-P. pseudolanceolata
299	(Bangiales, Rhodophyta) complex unmasked: recognition of new species based on
300	isozymes, morphology, chromosomes and distributions. <i>Phycologia</i> 31 : 431–48.
301	Lindstrom, S. C. and Fredericq, S. 2003. rbcL gene sequences reveal relationships among
302	north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P.
303	aestivalis. Phycol. Res. 51: 211–24.
304	Milstein, D., Medeiros, A. S., Oliveira, E. C. and Oliveira, M. C. 2015. Native or
305	introduced? A re-evaluation of Pyropia species (Bangiales, Rhodophyta) from Brazil
306	based on molecular analyses. Eur. J. Phycol. 50: 37–45.
307	Miura, A. 1984. A new variety and a new form of Porphyra (Bangiales, Rhodphyta) from
308	Japan: Porphyra tenera Kjellman var. tamatsuensis Miura, var. nov. and P.
309	yezoensis Ueda form. narawaensis Miura, form. nov. J. Tokyo Univ. Fish. 71: 1-14, pl.
310	I–XI.
311	Miura, A. 1988. Taxonomic studies of Porphyra species cultivated in Japan, referring to
312	their transition to the cultivated variety. J. Tokyo Univ. Fish. 75: 311-25.
313	Niwa, K. 2020. Science of Nori, Asakura Publishing, Tokyo, 194 pp. (in Japanese)
314	Niwa, K. and Aruga, Y. 2006. Identification of currently cultivated Porphyra species by
315	PCR-RFLP analysis. Fish. Sci. 72: 143–8.

316	Niwa, K., Iga, H. and Sato, T. 2022. Potential of Neoporphyra kitoi (Bangiales,
317	Rhodophyta) as a candidate species for marine crops with high temperature tolerance.
318	<i>Aquaculture</i> 548 : 737650.
319	Niwa, K., Iga, H., Shimada, Y., Furuita, H. and Yamamoto, T. 2023. Simple molecular
320	identification and free amino acid contents of Neoporphyra kitoi (Bangiales,
321	Rhodophyta) with potential use as a new species for nori cultivation. J. Appl. Phycol.
322	35 : 331–8.
323	Niwa, K., Kato, A., Kobiyama, A., Kawai, H. and Aruga, Y. 2008. Comparative study on
324	wild and cultivated Porphyra yezoensis (Bangiales, Rhodophyta) based on molecular
325	and morphological data. J. Appl. Phycol. 20: 261–70.
326	Niwa, K., Kikuchi, N. and Aruga, Y. 2005. Morphological and molecular analysis of the
327	endangered species Porphyra tenera (Bangiales, Rhodophyta). J. Phycol. 41: 294-304.
328	Niwa, K., Kikuchi, N., Hwang, M. S., Choi, HG. and Aruga, Y. 2014. Cryptic species in
329	the Pyropia yezoensis complex (Bangiales, Rhodophyta): sympatric occurrence of two
330	cryptic species even on same rocks. Phycol. Res. 62: 36-43.
331	Okamura, K. 1930. On the algae from the Island Hatidyo. Rec. Oceanogr. Works Jpn. 2:
332	92–110.
333	Okamura, K. 1936. Marine algae of Japan. (Nippon kaisô shi). Uchida Rokakuho, Tokyo.
334	(in Japanese).
335	Ronquist, F., Teslenko, M., van der Mark, P. et al. 2012. MrBayes 3.2: efficient Bayesian
336	phylogenetic inference and model choice across a large model space. Syst.
337	<i>Biol.</i> 61 : 539–42.
338	Sánchez, N., Vergés, A., Peteiro, C., Sutherland, J. E. and Brodie, J. 2014. Diversity of
339	bladed Bangiales (Rhodophyta) in western Mediterranean: recognition of the

- 340 genus *Themis* and descriptions of *T. ballesterosii* sp. nov., *T. iberica* sp. nov.,
- and *Pyropia parva* sp. nov. *J. Phycol.* **50**: 908–29.
- 342 Sano, F., Ikeura, A., Takasugi, A. and Niwa, K. 2021. First record of *Neoporphyra*
- 343 *haitanensis* (T.J.Chang & B.F.Zheng) J.Brodie & L.-E.Yang (Bangiales, Rhodophyta)
- 344 from Shikinejima Island and Hachijojima Island of the Izu Islands, southern Central
- 345 Japan. *Phycol. Res.* **69**: 258–65.
- 346 Sano, F., Murata, K. and Niwa, K. 2020. Identification, growth, and pigment content of a
- 347 spontaneous green mutant of *Pyropia kinositae* (Bangiales, Rhodophyta). J. Appl.
- 348 *Phycol.* **32**: 1983–94.
- Segawa, S. 1936. On the marine algae of Susaki, Prov. Izu, and its vicinity, II. *Sci. Pap. Inst. Algol. Res. Hokkaido Univ.* 1: 175–97.
- 351 Sutherland, J. E., Lindstrom, S. C., Nelson, W. A. et al. 2011. A new look at an ancient
- order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47: 1131–51.
- 353 Takahashi, A., Suzuki, H., Tanaka, J. and Matsuoka, T. 2015. A floristic study of seaweeds
- in Miyake Island, the Izu Islands, Japan. *Bull. Nippon Dental Univ. General Educ.* 44:
 43–56.
- Tanaka, T. 1952. The systematic study of the Japanese Protoflorideae. *Mem. Fac. Fish.*, *Kagoshima Uni.* 2: 1–92, pl. I–XV (in Japanese).
- 358 Ueda, S. 1932. A systematic study of genus *Porphyra* found on the Japanese coast. J. Imp.
- 359 Fish. Inst. 28: 1–45, pl. I–XXIV (in Japanese).
- 360 Wang, L., Mao, Y., Kong, F. et al. 2013. Complete sequence and analysis of plastid
- 361 genomes of two economically important red algae: *Pyropia haitanensis* and *Pyropia*362 *yezoensis*. *PLoS ONE* 8: e65902.
- 363 Yang, L. E., Zhou, W., Hu, C. M. et al. 2018. A molecular phylogeny of the bladed

- 366 Yang, L., Deng, Y., Xu, G., Russell, S., Lu, Q. and Brodie, J. 2020. Redefining Pyropia
- 367 (Bangiales, Rhodophyta): four new genera, resurrection of *Porphyrella* and description
- 368 of *Calidia pseudolobata* sp. nov. from China. J. Phycol. **56**: 862–79.
- 369 Yoshida, T., Suzuki, M. and Yoshinaga, K. 2015. Checklist of Marine Algae of Japan
 370 (Revised in 2015). *Jpn. J. Phycol.* 63: 129–89 (in Japanese).
- 371 Zhang, Y., Yan, X. H. and Aruga, Y. 2013. The sex and sex determination in *Pyropia*
- 372 *haitanensis* (Bangiales, Rhodophyta). *PLoS ONE* **8**: 1–8.
- 373 Zuccarello, G. C., Wen, X. and Kim, G. H. 2022. Splitting blades: why genera need to be
- 374 more carefully defined; the case for *Pyropia* (Bangiales, Rhodophyta). Algae **37**:
- 375 205–11.
- 376

377 Figure legends

378	Fig. 1. Map showing the sampling localities: Shikinejima, Izu Islands, Tokyo Metropolitan
379	Area, with the related localities, Shirahama, Chiba Prefecture, and Enoshima,
380	Kanagawa Prefecture, Honshu, Japan (a, b); a natural habitat of the bladed Bangiales
381	at site 1 on Shikinejima Island (c); and gametophytic blades of the bladed Bangiales
382	at site 1 (d). Black circles in b indicate the sampling sites. Arrows in c indicate the
383	zonation of the bladed Bangiales in the high intertidal zone on the rocky shore.
384	Fig. 2. Gametophytic blades of Neoporphyra cf. dentata collected from Shikinejima, Tokyo
385	Metropolitan Area, Japan. Three blades collected from site 1 and the SND-M2 blade
386	collected from site 2 are shown from left to right. Scale bar = 10 cm. The conchocelis
387	strain SND-2 was isolated from the third blade from the left.
388	Fig. 3. Morphology of gametophytic blades of Neoporphyra cf. dentata collected from
389	Shikinejima, Tokyo Metropolitan Area, Japan. (a) Marginal portion with microscopic
390	denticulae. (b) Surface view of vegetative cells. (c) Section of vegetative cells in the
391	central portion. (d) Surface view of spermatangia composed of 16 cells (a/4, b/4)
392	(arrow). (e) Line drawing of Fig. 3c. (f) Section of spermatangia containing 8 cell
393	layers (c/8) (arrow). (g) Line drawing of Fig. 3g. (h) Surface view of zygotosporangia
394	composed of 8 cells (a/4, b/2) (arrow). (i) Surface view of zygotosporangia composed
395	of 16 cells (a/4, b/4). (j) Line drawing of Fig. 3i. (k) Section of zygotosporangia
396	composed of 2 cell layers (c/2) (arrow). (l) Section of zygotosporangia composed of 4
397	cell layers (c/4) (arrow). (m) Line drawing of Fig. 31. Scale bars = 20 μ m.
398	Fig. 4. Maximum likelihood (ML) tree of the bladed Bangiales based on the <i>rbc</i> L gene
399	(total 1230 bp). Numbers below the branches indicate the bootstrap values (BP, left)
400	and Bayesian posterior probability (PP, right). Only BP \ge 50% and PP \ge 0.85% are

401 shown.

		F V			- I	FV)		1						
	Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	SND-2	—	0.0089	0.0089	0.0081	0.0358	0.0366	0.0374	0.0366	0.0301	0.0309	0.0390	0.0382	0.0439	0.0285	0.0325
2	SND-M2	11	—	0.0065	0.0057	0.0382	0.0390	0.0398	0.0390	0.0325	0.0333	0.0398	0.0390	0.0463	0.0309	0.0350
3	Neoporphyra cf. dentata	11	8	_	0.0008	0.0366	0.0374	0.0382	0.0374	0.0309	0.0317	0.0398	0.0374	0.0431	0.0309	0.0350
4	Porphyra sp. DE001	10	7	1	—	0.0358	0.0366	0.0374	0.0366	0.0301	0.0309	0.0390	0.0366	0.0439	0.0301	0.0341
5	Neoporphyra haitanensis PH-38, Yuge	44	47	45	44	—	0.0008	0.0016	0.0008	0.0114	0.0106	0.0398	0.0398	0.0496	0.0350	0.0390
6	Neoporphyra haitanensis LYCN162	45	48	46	45	1	—	0.0008	0.0008	0.0122	0.0114	0.0407	0.0407	0.0504	0.0358	0.0398
7	Neoporphyra haitanensis LYCN192	46	49	47	46	2	1	—	0.0016	0.0130	0.0122	0.0415	0.0415	0.0512	0.0366	0.0407
8	Neoporphyra haitanensis LYCN202	45	48	46	45	1	1	2	—	0.0122	0.0114	0.0407	0.0407	0.0504	0.0358	0.0398
9	Neoporphyra haitanensis SNH-1, SNH-2	37	40	38	37	14	15	16	15	_	0.0008	0.0390	0.0390	0.0463	0.0309	0.0366
10	Neoporphyra haitanensis HJH-1	38	41	39	38	13	14	15	14	1	_	0.0382	0.0382	0.0455	0.0301	0.0358
11	Neoporphyra kitoi Psp1	48	49	49	48	49	50	51	50	48	47	_	0.0024	0.0472	0.0252	0.0293
12	Neoporphyra kitoi UM-KT6, OHN-1	47	48	46	45	49	50	51	50	48	47	3	—	0.0455	0.0244	0.0285
13	Neoporphyra seriata	54	57	53	54	61	62	63	62	57	56	58	56	_	0.0415	0.0463
14	Porphyra sp. 6POR	35	38	38	37	43	44	45	44	38	37	31	30	51	—	0.0073
15	Porphyra sp. ZLI1045	40	43	43	42	48	49	50	49	45	44	36	35	57	9	—
404																
405																

Table 1. The number of differences (below diagonal) and p-distance (above diagonal) between the rbcL sequences (1230 bp) of the two samples (SND-2, SND-M2), Neoporphyra cf. dentata and Neoporphyra haitanensis, and the related species.

-

	Sample	1	2	3	4	5	6	7	8	9
1	SND-2		0.0030	0.0030	0.0030	0.0120	0.0150	0.0120	0.0240	0.0270
2	SND-M2	1	—	0.0000	0.0000	0.0150	0.0180	0.0150	0.0210	0.0300
3	Neoporphyra cf. dentata	1	0	—	0.0000	0.0150	0.0180	0.0150	0.0210	0.0300
4	Porphyra sp. DN002	1	0	0	—	0.0150	0.0180	0.0150	0.0210	0.0300
5	Neoporphyra haitanensis LYCN064, 106, 123, Yuge	4	5	5	5	—	0.0030	0.0120	0.0240	0.0270
5	Neoporphyra haitanensis LYCN108	5	6	6	6	1	_	0.0150	0.0270	0.0300
7	Neoporphyra kitoi Psp1, UM-KT6, OHN-1	4	5	5	5	4	5	—	0.0240	0.0150
8	Neoporphyra seriata	8	7	7	7	8	9	8	—	0.0330
9	<i>Porphyra</i> sp. ZLI1045	9	10	10	10	9	10	5	11	_

Table 2. The number of differences (below diagonal) and the *p*-distance (above diagonal) between the V9 sequences (333 bp) of the two 415 samples (SND-2, SND-M2), *Neoporphyra* cf. *dentata* and *Neoporphyra haitanensis*, and the related species.

432 **Table 3.** Morphological features of the bladed Bangiales collected from site 1 on Shikinejima (present study), *Neoporphyra haitanensis*

433 and *Neoporphyra dentata*.

Features	Present study	Neoporphyra dentata	Neoporphyra haitanensis			
Blade shape	Lanceolate, linear-lanceolate	Lanceolate, linear-lanceolate, linear, bamboo leaf shape, long ovate, oblong ovate, ovate, obovate	Lanceolate, linear-lanceolate, elongated subovate, subovate			
Shape of basal portion	Cordate or rounded	Cordate	Cordate, sometimes rounded or cuneate			
Blade color	le color Dark purplish red, light brownish purple, light reddish brown Dark mauve, mixture of violet and pur light purple, faded purple, light purplis pale brownish red		Dark greenish purple with brownish tinge, dark purplish red, light brownish purple			
Blade margin	Microscopic denticulae	Microscopic denticulae	One- to three-celled denticulae			
Chloroplast Single stellate		Single stellate	Single stellate, sometimes two stellates			
Blade section	ction Monostromatic Monostromatic		Monostromatic but distromatic portions			
Shape of vegetative cells in sectional view	Quadrate with rounded	Square, quadrate with rounded angles	Rectangular			
Thickness of vegetative portion (µm)	41–57 μm	30–58 µm	55–95 µm			
Sex type	Dioecious	Dioecious ¹⁾ , rarely monoecious	Mostly dioecious, sometimes monoecious, or monoecious ²⁾			
Division formula of spermatangia	128 (a/4, b/4, c/8)	128 (a/4, b/4, c/8)	128 (a/4, b/4, c/8), 256 (a/4, b/4, c/16)			
Division formula of zygotosporangia	16-32 (a/4, b/2-4, c/2-4)	16 (a/2, b/2, c/4)	8-32 (a/2-4, b/2, c/2-4) ³⁾			
Habitat	Upper intertidal zone	Upper intertidal zone	Upper intertidal zone			
Reference		Kjellman (1897), Ueda (1932), Okamura (1936), Tanaka (1952), Fukuhara (1968), Kim (1999)	Chang and Zheng (1960), Zhang <i>et al.</i> (2013), Sano et al. (2021)			

434 ¹⁾Kurogi and Yamada (1986) observed the specimens of Kjellman (1897). They suggested that the specimen is monoecious, although

435 Kjellman reported that *N. dentata* is dioecious.

436 ²⁾ Zhang *et al.* (2013) reported that *N. haitanensis* is monoecious.

437 ³⁾Although Chang and Zheng (1960) reported that the formula of zygotosporangia was 32 (a/2, b/4, c/4), we described it as 32 (a/4, b/2,

438 c/4).

439

Species	rbcL	185	Source
Neoporphyra cf. dentata SND-2, Japan	LC616364	LC616368	Present study
Neoporphyra cf. dentata SND-M2, Japan	LC616365	LC616369	Present study
Neoporphyra cf. dentata, Japan	HQ687520	HQ687588	Sutherland et al. (2011)
Neoporphyra haitanensis LYCN162, China	MG604540	_	Yang et al. (2018)
Neoporphyra haitanensis LYCN192, China	MG604567	_	Yang et al. (2018)
Neoporphyra haitanensis LYCN202, China	MG604576	_	Yang et al. (2018)
Neoporphyra haitanensis PH-38	KC464603	_	Wang et al. (2013)
Neoporphyra haitanensis SNH-1, Japan	LC599648	_	Sano et al. (2021)
Neoporphyra haitanensis SNH-2, Japan	LC599649	_	Sano et al. (2021)
Neoporphyra haitanensis HJH-2, Japan	LC599650	_	Sano et al. (2021)
Neoporphyra haitanensis Yuge, Ehime Japan	AB118585	AB013181	Sutherland et al. (2011)
Neoporphyra haitanensis LYCN064, China	_	MG647683	Yang et al. (2018)
Neoporphyra haitanensis LYCN106, China	_	MG647723	Yang et al. (2018)
Neoporphyra haitanensis LYCN108, China	_	MG647725	Yang et al. (2018)
Neoporphyra haitanensis LYCN123, China	_	MG647739	Yang et al. (2018)
Neoporphyra kitoi UM-KT6, Chiba Japan	LC634521	LC634518	Abe et al. (2021)
Neoporphyra kitoi Psp1, Yamaguchi Japan	LC328550	LC328547	Abe et al. (2021)
Neoporphyra kitoi OHN-1, Chiba Japan	LC626356	LC626357	Niwa et al. (2022)
Neoporphyra seriata, Kumamoto Japan	HQ687533	HQ687576	Sutherland et al. (2011)
Neoporphyra seriata E16047, Korea	MG845442		Koh and Kim (2018)
Porphyra sp. DE001, Kanagawa Japan	AB287971		
Porphyra sp. DN002, Kanagawa Japan	—	AB293534	
Porphyra sp. 6POR, Texas America	JN029003	_	Kucera and Saunders (2012)
Porphyra sp. ZLI1045, South Africa	GU165839	AY292635	Sutherland et al. (2011)
Wildemania amplissima, Hokkaido Japan	HQ687560		Sutherland et al. (2011)

441 Supplemental Table S1: List of accession numbers acquired from GenBank for the *rbcL*442 and 18S genes for molecular analyses and phylogenetic analyses.