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Abstract: The successful cultivation of Dinophysis norvegica Claparède & Lachmann, 1859, isolated
from Japanese coastal waters, is presented in this study, which also includes an examination of
its toxin content and production for the first time. Maintaining the strains at a high abundance
(>2000 cells per mL−1) for more than 20 months was achieved by feeding them with the ciliate
Mesodinium rubrum Lohmann, 1908, along with the addition of the cryptophyte Teleaulax amphiox-
eia (W.Conrad) D.R.A.Hill, 1992. Toxin production was examined using seven established strains.
At the end of the one-month incubation period, the total amounts of pectenotoxin-2 (PTX2) and
dinophysistoxin-1 (DTX1) ranged between 132.0 and 375.0 ng per mL−1 (n = 7), and 0.7 and
3.6 ng per mL−1 (n = 3), respectively. Furthermore, only one strain was found to contain a trace level
of okadaic acid (OA). Similarly, the cell quota of pectenotoxin-2 (PTX2) and dinophysistoxin-1 (DTX1)
ranged from 60.6 to 152.4 pg per cell−1 (n = 7) and 0.5 to 1.2 pg per cell−1 (n = 3), respectively. The
results of this study indicate that toxin production in this species is subject to variation depending on
the strain. According to the growth experiment, D. norvegica exhibited a long lag phase, as suggested
by the slow growth observed during the first 12 days. In the growth experiment, D. norvegica grew
very slowly for the first 12 days, suggesting they had a long lag phase. However, after that, they grew
exponentially, with a maximum growth rate of 0.56 divisions per day (during Days 24–27), reaching a
maximum concentration of 3000 cells per mL−1 at the end of the incubation (Day 36). In the toxin
production study, the concentration of DTX1 and PTX2 increased following their vegetative growth,
but the toxin production still increased exponentially on Day 36 (1.3 ng per mL−1 and 154.7 ng per
mL−1 of DTX1 and PTX2, respectively). The concentration of OA remained below detectable levels
(≤0.010 ng per mL−1) during the 36-day incubation period, with the exception of Day 6. This study
presents new information on the toxin production and content of D. norvegica, as well as insights into
the maintenance and culturing of this species.

Keywords: diarrhetic shellfish poisoning (DSP); Dinophysis norvegica; Mesodinium rubrum; Teleaulax
amphioxeia; pectenotoxin-2 (PTX2); dinophysistoxin-1 (DTX1); okadaic acid (OA)
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Key Contribution: This work describes the successful cultivation, toxin content, and production of
the cosmopolitan Dinophysis norvegica responsible for diarrhetic shellfish poisoning (DSP) in sub-
temperate cold marine waters. The toxin content for seven strains isolated from Japan as well as toxin
production for one of the strains in a 36-day culture are reported.

1. Introduction

Harmful algal blooms (HABs) are caused by several species of microalgae in freshwater,
marine, and brackish environments. These events may lead to important impacts on
the ecosystem and on a socioeconomic level, as well as human illnesses [1–3]. There
has been a marked increase in the occurrence of HABs worldwide [1–5]. The rise has
been associated with climate change and intensified anthropogenic activities, notably,
eutrophication, transport of species with maritime activities, alteration of natural habitats,
and growth of the aquaculture industry [4,6–14].

In marine waters, dinoflagellates include the majority of toxin-producing HAB species
and are responsible for several human poisoning syndromes, including Ciguatera fish
poisoning (CFP), neurotoxic shellfish poisoning (NSP), paralytic shellfish poisoning (PSP),
and diarrhetic shellfish poisoning (DSP) [15]. For example, gastrointestinal poisoning in
humans is caused by the consumption of shellfish contaminated with DSP toxins [16,17].
These toxins are produced by dinoflagellates from the genera Dinophysis, Phalacroma, and
Prorocentrum. Ten species of Dinophysis and two species of Phalacroma are known to produce
lipophilic diarrhetic shellfish toxins, or DSTs, i.e., okadaic acid (OA) and its analogs such
as dinophysistoxins (DTX), principally DTX1, DTX2, and DTX3, in addition to bioactive
pectenotoxins, PTX [17–28].

Typically, Dinophysis spp. do not attain high cell densities, but form dense patches of
populations, which sets them apart from other HAB species and makes their monitoring and
prediction of shellfish contaminations with DSTs more difficult, especially since molecular
tools have been hard to develop due to insufficient resolution to differentiate between the
species [21,29–36].

Despite the availability of extensive studies, little is known about the ecophysiology,
bloom mechanisms, and toxin production of the Dinophysis species due to difficulties in es-
tablishing and maintaining cultures [21,37–39]. The discovery of mixotrophy in Dinophysis
species [37–40] and plastids of cryptophyte origin [40–47] led to the first success in establish-
ing cultures of Dinophysis acuminata Claparède & Lachmann, 1859 [48]. Seven species were
subsequently cultured based on feeding Dinophysis spp. with the ciliate Mesodinium rubrum
grown with the cryptophyte Teleaulax sp., namely, D. fortii Pavillard, 1924 [49]; D. acuta
Ehrenberg, 1839 [50]; D. sacculus F. Stein, 1883 [51]; D. tripos [52]; D. cf. ovum (F.Schütt)
T.H.Abé [53]; D. caudata Saville-Kent, 1881 [54]; and D. infundibulum J. Schiller, 1928 [55].
Mainly growth and, in some cases, toxin production in the established cultures have been
reported. A few studies have investigated the effects of temperature, prey, and irradiance
on the growth and toxin production of Dinophysis spp. in these cultures [33,48,56–65].

The global expansion of Dinophysis species associated with climate change and aqua-
culture activities has resulted in difficulties for fisheries and the aquaculture industry
through the long-term closure of shellfish-producing areas [14,66,67]. Among the toxigenic
species, six of the Dinophysis species are widely distributed across the globe, including
D. norvegica [36,68,69]. D. norvegica is usually reported in the northern hemisphere, which
is the cold-temperature region, for example, including the coastal waters around Scot-
land and Norway, the Baltic Sea, and the Arctic Sea [29,30,70–76]. Recently, the species
was reported for the first time at very low occurrence in oceanic samples in the southern
hemisphere, in the southern Argentine Sea [77]. It forms dense blooms in the Baltic Sea
and eastern Canada, with mild DSP outbreaks [72,78–80]. The earliest information from
1989 based on cells isolated from field samples showed the production of either OA or
DTX1, or both, in Japan, Norway, and Spain [17], and a high content of OA in eastern
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Canada [81]. More recently, LC-MS have shown the production of PTX2, PTX12, and traces
of OA by strains from Norway [22]. In the Baltic Sea, D. norvegica produces OA, PTX2, and
PTX2SA [82], leading to the contamination of blue mussels and flounders with OA [83,84].
One recent study reported the production of Dihydrodinophysistoxin-1 in isolated cells
from environmental samples and cultures of D. norvegica from the Gulf of Maine, USA [85],
with a complete absence of OA, DTX1, and DTX2 following analyses with LC-MS/MS.
In Japan, high levels of PTX2 have been reported for the first time in cells of D. norvegica
isolated from field samples [86]. In a later study, PTX2 was confirmed as the dominant toxin
in D. norvegica, although some of the isolated cells had trace levels of OA and DTX1 [87].
In the present study, we report the successful cultivation of D. norvegica isolated from
Japanese waters for the first time. The toxin productions in seven strains of D. norvegica
are provided, as well as the information on the growth and toxin production of one strain
(DN16062021FUN-06) during a 36-day culture experiment.

2. Results
2.1. Species Identification

Dinophysis norvegica cells are generally large, ovoid, and robust. The posterior end
tapers to a triangular shape (Figure 1). The micrographs showed the large nucleus which
occupied the upper half of the cell and food vacuoles at the lower part (Figure 1A) and
numerous chloroplasts (Figure 1B). Dinophysis acuta closely resembles D. norvegica based
on morphology; therefore, they may be misidentified. These species can be distinguishable
by their size (although it overlaps) and the location of the widest position: D. acuta is
larger and widest below the mid-section, whereas D. norvegica is smaller and widest in
the middle region of the cell [88,89]. A phylogenetic analysis based on the D1/D2 region
(735 bp) supported that the strains isolated from Funka Bay, Japan, belong to the D. norvegica
clade (Figure 2), and are closely related to the strains from Canada, Norway, and the USA
(Atlantic Ocean).
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Figure 1. Micrographs of a vegetative cell of Dinophysis norvegica in culture in a bright field (A) and
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Bootstrap supports of ML and neighbor joining (NJ) and posterior probabilities (PP) of Bayesian
inference are indicated at node (ML/NJ/PP). Culture strains obtained in this study are in bold.

2.2. Feeding Behavior and Growth of Dinophysis Norvegica from Funka Bay in
Culture Experiments

Only seven cultures of 48 single-cell isolates grew with the addition of the ciliate
Mesodinium rubrum from the Oita Prefecture (Japan) as the prey species. However, clonal
strains were successfully established, and the isolation success was 14.6% (7/48). Max-
imum cell densities of cultured strains during the 36 days of incubation ranged from
1057 cells per mL−1 to 3050 cells per mL−1 (mean of 2020 ± 702 cells per mL−1; n =7).
Similar to the case of other Dinophysis species, Dinophysis norvegica was able to feed on the
ciliate M. rubrum and grow.

In the growth experiment (12.5 ◦C, 12:12 light/dark cycle and irradiance of
100 µmol m−2 s−1), the ciliate M. rubrum grew exponentially during the first 9 days,
reaching 5600 ± 346 cells per mL−1 (mean ± SD, n = 3) (Figure 3). The information on the
experimental conditions is available in Section 4.1. After that, cell abundances of M. rubrum
decreased sharply and disappeared by Day 30, probably due to the active consumption by
D. norvegica and natural death. Dinophysis norvegica grew, but it showed very slow growth
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for the first 12 days, suggesting that they have a long lag phase. After that, they grew
exponentially, with a maximum growth rate of 0.56 divisions per day−1 (from Day 24 to
Day 27), reaching a maximum concentration of 2883 ± 104 cell per mL−1 at the end of
incubation (Day 36), and the growth rates in every third day from Day 0 to Day 30 were
−0.06 to 0.56 divisions per day−1 (0.18 ± 0.18) (Figure 3).
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2.3. Toxin Production

Low levels of DTX1 were found, but only in cells of three strains of D. norvegica at
0.5 pg per cell−1 for DN16062021FUN-05, 0.7 pg per cell−1 for DN16062021FUN-08, and
1.2 pg per cell−1 for DN16062021FUN-06. All seven strains, however, produced PTX2 with
cell quotas varying from 60.6 pg per cell−1 to 152.4 pg per cell−1 (Table 1). In cultures, the
toxin concentration ranged from 0.705 ng per mL−1 to 3.55 ng per mL−1 in the case of DTX1
and from 126 ng per mL−1 to 375 ng per mL−1 in the case of PTX2 (Table 1). All strains of
Dinophysis norvegica did not produce OA, except for strain DN16062021FUN-08, in which
we detected a trace level of OA. Thus, the PTX2 showed clear peaks in all D. norvegica
strains, and the DTX1 was detected in enough concentrations to be quantified from three
strains, DN16062021FUN-05, DN16062021FUN-06, and DN16062021FUN-08. OA was
lower than the detection limit concentration in all strains, but there was a small peak with a
signal-to-noise ratio of 4 at the same retention time as OA in the MRM chromatograms of
strain DN16062021FUN-08 (Figure 4). It may be possible that OA could be detected from
samples with high cell density and concentration.

Table 1. Toxin production in seven cultured strains of Dinophysis norvegica.

Strains
Concentration in
Culture (ng per mL−1) Number

of Cells

Cell Quota
(pg per mL−1)

OA DTX1 PTX2 OA DTX1 PTX2

DN16062021FUN-01 ND (<0.1) ND (<0.1) 137 1807 ND (<0.01) ND (<0.01) 75.8
DN16062021FUN-02 ND (<0.1) ND (<0.1) 126 2080 ND (<0.01) ND (<0.01) 60.6
DN16062021FUN-03 ND (<0.1) ND (<0.1) 145 2333 ND (<0.01) ND (<0.01) 62.1
DN16062021FUN-05 ND (<0.1) 1.44 375 2850 ND (<0.01) 0.5 131.6
DN16062021FUN-06 ND (<0.1) 3.55 316 3050 ND (<0.01) 1.2 103.6
DN16062021FUN-07 ND (<0.1) ND (<0.1) 161 1057 ND (<0.02) ND (<0.02) 152.4
DN16062021FUN-08 ND (<0.1) 0.705 132 936 ND (<0.02) 0.7 137.0

OA: Okadaic acid; DTX1: Dinophysistoxin-1; PTX2: Pectenotoxin-2; ND: Not detected (limit of detection); After
one month of incubation, 1 mL of each culture was sampled for toxin analysis.
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(B): A chromatogram of OA MRM transition (m/z 803.5 > 255.1) from Dinophysis norvegica strain
DN16062021FUN-08 extract. (C): A chromatogram of DTX1 MRM transition (m/z 817.5 > 255.1) from
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Strain DN16062021FUN-06 of D. norvegica produced DTX1 and PTX2 throughout
the 36-day culture experiment (Figure 5). Both productions of DTX1 and PTX2 started to
increase from 0.092 ± 0.009 pg per cell−1 on Day 12 to 1.280 ± 0.185 pg per cell−1 on Day
36, and from 9.3 ± 0.5 pg per cell−1 on Day 12 to 154.7 ± 24.2 pg per cell−1 on Day 36,
respectively. The specific toxin production rates for DTX1 and PTX2 during the exponential
growth phase were 0.291 ± 0.020 pg per mL−1 per day−1 and 0.291 ± 0.023 pg per mL−1

per day−1, respectively. The net toxin production rate (Rtox) during the exponential growth
phase was 0.001 ± 0.0003 ng per mL−1 per day−1 for DTX1 and 0.13 ± 0.03 ng per mL−1

per day−1 for PTX2 in the exponential phase. DTX2 concentrations that were above the
detection limit were detected from Day 18 to Day 36 and ranged from 0.132 to 1.28 ng per
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mL−1. For PTX2, the concentrations above the detection limit were measured from Day 3
until the end of the experiment, Day 36, and were in the range of 3.4 to 154.7 ng per mL−1.
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3. Discussion

Similar to the case of other Dinophysis species [49–55], Dinophysis norvegica could feed
on the ciliate M. rubrum by inserting the peduncle into the cells. The ciliate became immobile
just after insertion, and their cilia were shed from the cell within 1–5 min. The cytoplasm of
the prey was actively ingested through the peduncle. It took 45–100 min until the whole cell
content of M. rubrum was consumed by D. fortii and D. tripos [49,52]. Dinophysis acuminata,
D. caudata, and D. fortii, isolated from Japanese coastal waters, displayed growth rates of
0.50–1.03 divisions per day−1, reaching maximum concentrations of 2200–11,000 cells per
mL−1 at temperatures ranging from 18 to 25 ◦C [36]. In this study, D. norvegica showed
a similar growth rate at a lower temperature (12.5 ◦C) than other species. The culture
strains were maintained successfully at high densities (>2000 cells per mL−1) for more
than 20 months. This is an advancement compared to previous findings, where clonal
cultures of D. norvegica isolated from Funka Bay and Lake Notoroko in Hokkaido, Japan,
grew well (>1000 cells per mL−1) in the first incubation (24/96, 25%). However, when
they were reinoculated into fresh Mesodinium cultures, no further growth was confirmed,
and thus, it was not possible to establish their cultures (0/96, 0%) [52]. This led to the
conclusion that the predator and the prey from different regions may be incompatible and
cause failure in culturing [52]. In the growth experiment using the established cultures,
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D. norvegica had a much longer log phase (12 days) (Figure 3) than D. acuminata, D. caudata,
and D. fortii (3–4 days) [49,54,55]. D. norvegica may become unstable when reinoculated
into fresh Mesodinium cultures because of sudden environmental changes such as changes
in pH. It is suggested that the reinoculation of D. norvegica cells with a relatively high
concentration (>250 cells per mL−1) would achieve the successful maintenance of the
cultures for long periods. The ranges of water temperatures and salinity in which this
species appears in southern Hokkaido, including Funka Bay, were 2–16 ◦C and 24.3–33.9
PSU during 2016–2020 (https://www.hro.or.jp/list/fisheries/research/central/section/
kankyou/kaidoku/j12s220000000dgw.html, accessed on 2 February 2023). The influence of
the temperature (12.5 ◦C) on the success of establishing cultures is still unclear in this study.

The establishment of strains in the toxic Dinopshysis species is important for investi-
gating toxin production and understanding how it is influenced by changes in physical–
chemical conditions. Until now, information on the concentration of toxins produced
by D. norvegica has been available based on isolated and pooled cells from field samples
from two locations in Norway (Sogndal and Flødevigen Bay) and in Japan (Yakumo and
Saroma) [19,22,87]. Similar to the previous records based on isolated cells, OA concen-
trations in cultured strains remained below the detection limit [19,22,87]. The maximum
DTX1 concentrations in cultured strains were lower than reported based on cells from
field samples (1.16 pg per cell−1 vs. 14 pg per cell−1) [19,22,87]. Interestingly the PTX2
maximum concentrations were much higher in the cultured strains (152 pg per cell−1),
than in the cells collected from the field in Yakumo Japan (89 pg per cell−1) and 1.7 pg per
cell−1 from Flødevigen Bay in Norway [22,87]. From 1987 until 2022, 43 HABs associated
with D. norvegica were recorded globally, the majority of them associated with DSP [90]. A
study based on Scottish shellfish farms estimated that a 1% increase in the toxins produced
by Dinophysis spp. can lead to a 0.66% reduction in shellfish production, resulting in an
estimated annual loss of GBP 1.37 million [91]. Additional studies on strains in culture
may therefore enhance our understanding of not only the variability in toxin production
between strains from the same and different geographical locations but also the impact of
changes in physicochemical variables. [69,92].

4. Materials and Methods
4.1. Isolation and Establishment of Clonal Cultures

The ciliate Mesodinium rubrum and cryptophyte Teleaulax amphioxeia were isolated
from Inokushi Bay (32.7998 N, 131.8923 E) in Oita Prefecture, Japan, at the end of Febru-
ary 2007 [49]. To sustain the M. rubrum culture, a mixture of 50 mL of the culture
(7.0–9.0 × 103 cells per mL−1) and 100 mL of a modified f/2 medium [93,94] was pre-
pared, along with 25–100 µL of T. amphioxeia culture (containing 0.5–2.0 × 104 cells) as a
food source. The culture medium was prepared based on autoclaved natural seawater col-
lected from Tokyo Bay (35.3460 N, 139.6570 E) with the addition of 1/3 nitrate, phosphate,
metals, and 1/10 vitamins. Before autoclaving, the salinity of the seawater was adjusted
to 30 practical salinity units (PSU). The ciliate culture was maintained at a temperature of
18 ◦C under a photon irradiance of 100 µmol m−2 s−1, provided by cool-white fluorescent
lamps, with a 12:12 h light/dark cycle.

Cells of Dinophysis norvegica (48 cells in total) were isolated by micropipetting from
a seawater sample collected from Funka Bay, Japan (42.28 N, 140.35 E), in June 2021 and
incubated in individual wells of a 48-well microplate (Iwaki, Japan). Each D. norvegica cell
was grown in 1.0 mL of the culture medium, containing ca. 1.0 × 103 cells of M. rubrum as
the prey species. Dinophysis cells were incubated under the same light conditions as those
for the M. rubrum culture, but at 12.5 ◦C. After one month of incubation, seven strains grew
well and were established as clonal strains. The established cultures in each strain were
maintained by inoculating small aliquots (0.1 mL) into 2.9 mL of fresh M. rubrum culture
(approximately 2 × 103 cells per mL−1) in 12-well microplates. These microplates were then
incubated for a month under the same conditions as mentioned above, without the addition
of Teleaulax culture. After one month of incubation, 1 mL of culture from each strain was

https://www.hro.or.jp/list/fisheries/research/central/section/kankyou/kaidoku/j12s220000000dgw.html
https://www.hro.or.jp/list/fisheries/research/central/section/kankyou/kaidoku/j12s220000000dgw.html
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sampled for toxin analysis. Cell abundances were estimated on 100 µL of cultures (in
triplicates) inoculated and fixed with Lugol’s solution (2%) into a 96-well plate (Iwaki,
Japan). Cells were counted under the inverted microscope (Nikon TE-300). Additionally,
the orange autoflorescence derived from the chloroplasts of M. rubrum in D. norvegica
cells was observed using an epifluorescence microscope under blue light excitation ((Zeiss
Axioskop 2 (Carl Zeiss, Göttingen, Germany)) equipped with a digital camera (Axiocam
305 color (Carl Zeiss, Göttingen, Germany)).

4.2. Growth Experiments

The ciliate Mesodinium rubrum culture grown until the late exponential growth phase (ca.
5.0 × 103 cells per mL−1) was diluted with the fresh culture media when it reached the late
exponential growth phase to obtain an initial cell abundance of ca. 2.0 × 103 cells per mL−1,
and 7.5 mL aliquots of the mixed culture were inoculated into the wells of 6-well microplates
(Iwaki, Japan). Next, 125 µL of a D. norvegica culture (strain DN16062021FUN-06) contain-
ing 375 cells was added into the M. rubrum culture to obtain an initial concentration of
50 cells per mL−1. The growth experiment was conducted for 36 days under the same
light and temperature conditions used for maintaining the culture of D. norvegica. In the
growth experiment, 1 mL of the cultures (triplicate) was sampled for toxin analysis every
three days except for Day 33. D. norvegia and Mesodinium cell abundances were obtained as
described in the previous paragraph. The specific growth rate (µ, divisions per day−1) of
D. norvegica was determined during the exponential growth phase according to [95].

4.3. Sequences of 28S rDNA (D1-D2 Region)

Genomic DNA was extracted from several cells in each strain with 5% Chelex buffer
in four of the established strains [96]. The reaction mixture for PCR amplification was
prepared by adding 1 µL of template DNA, 1 µM of both D1/D2 primer sets [97], 0.2 mM
of each dNTP, 1× PCR buffer, 1.5 mM Mg2+, 1U KOD-Plus-Ver.2 (TOYOBO, Osaka, Japan),
and RNA-free dH2O to achieve a final volume of 25 µL. The amplification was carried
out using a thermal cycler (PC-808, ASTEC, Fukuoka, Japan). PCR amplification was
performed with the following cycling conditions: 2 min at 94 ◦C, 30 cycles at 94 ◦C for
15 s, 55 ◦C for 30 s, and 68 ◦C for 40 s. The PCR products were transformed into DH5α
cells (Promega, Madison, WI, USA) after ligation into the pGEM T-Easy Vector (Promega).
After color selection, plasmid DNA was purified and the DNA sequences were determined
using M13 Reverse and U19 primers with a Dynamic ET terminator cycle sequencing
kit (GE Healthcare, Little Chalfont, UK). The sequences were then analyzed on a DNA
sequencer (ABI3730, Applied Biosystems, Foster City, CA, USA). A BLAST search was
performed to determine closely related species, and their GenBank sequences were obtained
for phylogenetic analyses. The sequences were aligned using AliView [98], and identical
sequences were compiled into a single sequence. All newly obtained sequences were
deposited into the DDBJ databank (accession numbers: LC760478-LC760481).

A phylogenetic tree was constructed based on maximum likelihood (ML) using MEGA
version 10 [99] with the best substitution model selected: Kimura 2-parameter model plus
gamma distribution (G = 0.86). Bootstrap support (BS) values of ML and neighbor-joining
(NJ) analyses for the trees were estimated using 500 replicates each. For the posterior
probabilities (PP) of Bayesian inference, the best model substitution calculated by Akaike
information criterion in jModelTest version 2.1.10 [100] was TIM plus gamma (G = 0.9710),
and the effective sample size was calculated using Bayesian Evolutionary Analysis Sam-
pling Trees (BEAST) and Tracer. Bayesian inference was conducted using MrBayes version
3.2.5 [101] based on the Bayesian information criteria calculated by jModelTest. A total of
3,077,000 Markov chain Monte Carlo generations were used with 4 chains and trees sam-
pled every 1000 generations with PP estimated with 25% generations burn-in. Convergence
of the chains was reconfirmed when the average standard deviations of the split frequencies
were below 0.01 after calculations. Sequences from Prorocentrum micans Ehrenberg, 1834,
and Prorocentrum cordatum (Ostenfeld) J.D.Dodge, 1976, were used as outgroup.
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4.4. DSP Toxin Analysis

The samples were frozen at −30 ◦C until the toxins were extracted by solid-phase ex-
traction (SPE). The SPE of toxins was modified compared to a previous method [86,102–104].
The MonoSpin C18 centrifuge cartridge column (GL Science Inc., Tokyo, Japan) was loaded
with 1 mL of the thawed samples and conditioned with 1.0 mL each of methanol and
distilled water. The SPE column was rinsed with 0.5 mL distilled water, and the toxins
were extracted with 0.1 mL methanol. The methanol eluates were subjected to LC-MS/MS
analysis using a previously established method. [105]. A Nexera-20XR series liquid chro-
matograph (Shimadzu, Kyoto, Japan) was coupled to a QTRAP 4500 mass spectrometer
(SCIEX, MA, USA) of a hybrid triple quadrupole/linear ion trap. Separations were per-
formed on LC columns (internal diameter [i.d.], 100 mm × 2.1 mm) packed with 1.9 µm
Hypersil GOLD C8 (Thermo Fisher Scientific Inc., Waltham, MA, USA) and maintained at
30 ◦C. Eluent A was composed of water, while eluent B was a mixture of 95% acetonitrile
and 5% water, which contained both 2 mM ammonium formate and 50 mM formic acid.
Toxin elutions were carried out from the column with 50% B at a flow rate of 0.3 mL per
min−1. LC-MS/MS analysis was performed using multiple-reaction monitoring (MRM)
with negative-mode ionization. The target parent ions and fragment ions in Q1 and Q3
were used for each toxin, as follows: OA, m/z 803.5 > 255.1; DTX1, m/z 817.5 > 255.1; PTX2,
m/z 857.5 > 137.0; PTX1 and PTX11, m/z 873.5 > 137.0; PTX2 Seco acid (PTX2 SA), m/z 875.5
> 137.0. The lowest detection limits of OA/DTX1 and PTX2 were 0.1 and 1.2 ng per mL−1.
The LC-MS/MS method was used to analyze 100 cells of the toxic plankton, which showed
levels equivalent to 0.1 pg/cell of OA (and DTX1) and 1.2 pg/cell of PTX2. During the
growth experiments, the specific toxin production rate (µtox, pg per cell−1 per day−1) and
net toxin production rate (Rtox) were calculated for the exponential growth phase, using
the previously published equations [106].
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