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ABSTRACT

Although numerous coral reef fish species utilize substrates with high structural
complexities as habitats and refuge spaces, quantitative analysis of nocturnal fish
substrate associations has not been sufficiently examined yet. The aims of the present
study were to clarify the nocturnal substrate associations of 17 coral reef fish species
(nine parrotfish, two surgeonfish, two grouper and four butterflyfish) in relation
to substrate architectural characteristics. Substrate architectural characteristics were
categorized into seven types: (1) eave-like space, (2) large inter-branch space, (3)
overhang by protrusion of fine branching structure, (4) overhang by coarse structure,
(5) uneven structure without large space or overhang, (6) flat and (7) macroalgae.
Opverall, fishes were primarily associated with three architectural characteristics (eave-
like space, large inter-branch space and overhang by coarse structure). The main
providers of these three architectural characteristics were tabular and corymbose
Acropora, staghorn Acropora, and rock. Species-specific significant positive associations
with particular architectural characteristics were found as follows. For the nine
parrotfish species, Chlorurus microrhinos with large inter-branch space and overhang
by coarse structure; Ch. spilurus with eave-like space and large inter-branch space;
Hipposcarus longiceps with large inter-branch space; Scarus ghobban with overhang
by coarse structure; five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatus and
S. schlegeli) with eave-like space. For the two surgeonfish species, Naso unicornis with
overhang by coarse structure; N. lituratus with eave-like space. For the two grouper
species, Plectropomus leopardus with eave-like space; Epinephelus ongus with overhang
by coarse structure. For the four butterflyfish species, Chaetodon trifascialis with eave-
like space and large inter-branch space; C. lunulatus and C. ephippium with large
inter-branch space; C. auriga showed no significant associations with any architectural
characteristics. Four species (Ch. microrhinos, H. longiceps, S. niger and N. unicornis)
also showed clear variations in substrate associations among the different fish size
classes. Since parrotfishes, surgeonfishes and groupers are main fisheries targets in
coral reefs, conservation and restoration of coral species that provide eave-like space
(tabular and corymbose Acropora) and large inter-branch space (staghorn Acropora) as
well as hard substrates with coarse structure that provide overhang (rock) should be
considered for effective fisheries management in coral reefs. For butterflyfishes, coral
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species that provide eave-like space (tabular Acropora) and large inter-branch space
(staghorn Acropora) should also be conserved and restored for provision of sleeping
sites.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology,
Zoology

Keywords Nocturnal substrate association, Parrotfishes, Surgeonfishes, Groupers, Butterflyfishes,
Substrate characteristics, Sleeping site

INTRODUCTION

Coral reefs provide various substrates with high structural complexities, which are key
determinants supporting high species diversity of marine organisms (Jaap, 2000; Yanovski,
Nelson & Abelson, 2017). Numerous coral reef fish species utilize substrates with a high
structural complexity as habitats and refuge spaces (Luckhurst & Luckhurst, 1978; Ménard
et al., 2012; Richardson et al., 2017; Oren et al., 2023). Species-specific habitat associations
to specific substrates or structural complexities have also been reported (Wilson et al.,
2008; Ticzon et al., 2012; Untersteggaber, Mitteroecker ¢ Herler, 2014; Nanami, 2023). Such
species-specific habitat associations have been shown to influence populations through
survivorship (Fakan et al., 2024).

Coral reef fishes provide various ecosystem services such as natural food production,
ornamental resources, aquarium resources, habitat maintenance and recreation (Moberg
& Folke, 1999; Laurans et al., 2013; Elliff & Kikuchi, 2017; Sato et al., 2020). This diverse
ecosystem services provided by coral reefs include supporting (biodiversity benefit and
habitat), regulating (coastal protection and water quality), provisioning (fishery and
materials) and cultural services (Woodhead et al., 2019). Among the diverse ecosystem
services, the provision of fisheries targets is recognized as an essential service (Elliff
& Kikuchi, 2017; Woodhead et al., 2019). Specifically, parrotfishes (family Labridae:
Scarini), groupers (family Epinephelidae) and surgeonfishes (family Acanthuridae) are
the main targets of commercial fisheries in many countries in tropical and sub-tropical
regions (e.g., Bejarano et al., 2013; Taylor et al., 2014; Akita et al., 2016; Frisch et al., 2016).
Provision of ornamental resources or aquarium resources is also an important ecosystem
service in coral reefs, and butterflyfishes (family Chaetodontidae) are regarded as a target
in the aquarium trade for their popularity as ornamental fishes ( Tissot ¢ Hallacher, 2003;
Wabnitz et al., 2003; Lawton, Pratchett ¢ Delbeek, 2013).

Several studies have revealed species-specific spatial distributions of these four fish groups
in relation to topographic features or environmental characteristics (e.g., Newman, Williams
& Russ, 1997; Hoey & Bellwood, 2008; Herndndez-Landa et al., 2014; Nanami, 2020;
Nanami, 2021). Previous studies have also revealed the foraging substrates for parrotfishes
(Bonaldo & Rotjan, 2018; Nicholson & Clements, 2020), surgeonfishes (Robertson & Gaines,
1986), groupers (Wen et al., 2013a) and butterflyfishes (Cole ¢ Pratchett, 2013; Pratchett,
2013). In contrast, precise substrate characteristics (e.g., coral species, coral morphology
and physical structure) that were directly associated by fish individuals of these fish
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groups have not been sufficiently examined. This is because most individuals belonging
to these fish groups are diurnally active and rarely show hiding behavior with specific
substrates. Although some previous studies have revealed the diurnal substrate associations
of groupers (Nanami et al., 2013; Wen et al., 2013b), their nocturnal associations have not
been examined yet.

Several previous studies have shown high site fidelity by parrotfishes (Welsh ¢ Bellwood,
2012; Pickholtz et al., 2022), surgeonfishes (Meyer ¢ Holland, 2005; Marshell et al., 2011),
groupers (Zeller, 1997; Matley, Heupel & Simpfendorfer, 2015; Nanami et al., 2018) and
butterflyfishes (Yabuta ¢ Berumen, 2013). For instance, Pickholiz et al. (2022) revealed
that three parrotfish species repetitively used specific spaces during nocturnal periods in
the Red Sea. Marshell et al. (2011) showed high site fidelity during nocturnal periods by
two surgeonfish species in Guam. From the results of these studies, nocturnal substrate
associations might be observed due to their nocturnal high site fidelity.

Improving the understanding of nocturnal substrate associations of fishes would
provide useful ecological information for effective ecosystem management such as
habitat protection and restoration by implementation of marine protected areas. This
is because conservation of critical habitats for target species is crucial for marine protected
area planning (Kelleher, 1999; Green, White & Kilarski, 2013). Thus, nocturnal substrate
association of fishes should be determined to understand better the critical habitats in terms
of fish nocturnal habitat utilization. In addition, parrotfishes, groupers and surgeonfishes
are primary target species in the Pacific Islands fishery and nighttime spear fishing is one
of the methods to catch inactive individuals (Gillett & Moy, 2006). Thus, identifying the
substrate characteristics that are utilized by fishes as sleeping sites is critical for conservation
of fishing points. Although some previous studies have revealed nocturnal fish substrate
associations (Hobson, 1965; Robertson ¢ Sheldon, 1979; Pickholtz et al., 2023), quantitative
analysis of nocturnal substrate associations in relation to substrate availability has not been
sufficiently examined yet.

The aims of the present study were to understand the nocturnal substrate associations of
four coral reef fish groups (parrotfishes, surgeonfishes, groupers and butterflyfishes), which
provide many ecosystem services in coral reefs. Specifically, the aims were to understand
nocturnal substrate associations of fish in terms of (1) architectural characteristics (physical
structure) and (2) more precise aspects (coral morphology, live coral or dead coral, and
non-coralline substrates). The results will enable a more comprehensive understanding of
the association between coral reef fishes and substrate characteristics, and may be useful
in helping us to anticipate changes in fish assemblages structure that may occur due to
anthropogenically or climate induced changes in coral reefs.

MATERIALS AND METHODS

The study was conducted by field observations. Fish individuals that were caught for
sampling by spear were euthanized immediately to minimize suffering. Okinawa prefectural
government fisheries coordination regulation No. 37 approved the sampling procedure
(https:/www.pref.okinawa.jp/_res/projectsidefault_project/_page_001/011/218/02kisoku.
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Figure 1 Maps showing the location of the Yaeyama Islands (A), study area (B) and the 19 study
sites used for examining nocturnal substrate associations of fishes (C). (A) Map created by processing
Geospatial Information Authority (https:/mapps.gsi.go.jp/maplibSearch.do#1). The aerial photographs in
(B) and (C) were provided by the International Coral Reef Research and Monitoring Center.

Full-size Gl DOT: 10.7717/peer;j.17772/fig-1

pdf), which permits capture of marine fishes on Okinawan coral reefs for scientific
purposes.

Fish survey and study species
This study was conducted at Sekisei lagoon and Nagura Bay in the Yaeyama Islands,
Okinawa, Japan (Fig. 1). Nocturnal underwater observations (1830 h—-23:00 h) were
conducted at 19 sites between November 2021 and March 2022. Using SCUBA and
flashlights, the first diver swam in a zigzag pattern and searched for inactive individuals
that were associated with substrates (Fig. 2), taking special care not to overlap with previous
courses. The second diver followed the first diver with a data collection sheet. When the
first diver found a focal fish, the second diver recorded the species, total length (TL) and
substrate with which the focal fish individual was associated. In some cases, the whole body
of the fish was not completely observed due to hiding behavior within the substrate. In this
case, the focal fish individual was collected by spear and the TL was measured. Over 40 min
observations were conducted at each site (ranging from 40 to 72 min, average u = 52.3
4 9.2 s.d. minutes). According to Nanami (2021), average distance of 1-minute swimming
was 17.4 m. Thus, the estimated distance of each time survey was 17.4 m X survey minutes.
Since the width of the time transect was 5 m, the estimated area was distance x5 m?.
During the observation period, 19, two, nine, and 12 parrotfish, surgeonfish, grouper
and butterflyfish species were identified, respectively (Table 1). Among them, nine, two,
two, and four species showed higher frequencies (total number of individuals was 10 or
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(A) Chlorurus microrhinos # 1 (C) Hipposcarus longiceps (B) Scarus ghobban

@

(J) Naso unicornis

(N) Chaetodon trifascialis

Figure 2 (A—Q) Examples of inactive fish individuals that were associated with substrates at nighttime
for the 17 species. One example is shown for each species. For more details about substrate associations of
fishes, see Figs. 4-9. All fish photographs were taken by the author (A. Nanami).

Full-size Gal DOT: 10.7717/peerj.17772/fig-2

more) for parrotfishes, surgeonfishes, groupers and butterflyfishes, respectively. Thus, the
data analysis was conducted in two steps. The first step was to clarify the species-level
substrate associations by using above-mentioned 17 most frequent species (nine, two, two
and four species for parrotfishes, surgeonfishes, groupers and butterflyfishes, respectively).
The second step was to clarify the family-level substrate associations by using all species
including both frequent and less-frequent species (19, two, nine, and 12 species for
parrotfishes, surgeonfishes, groupers and butterflyfishes, respectively).

Data collection of substrate availability

Substrate availability at the 19 study sites was recorded during daytime. The locations
of sites where nocturnal observations were conducted were recorded using a portable
GPS receiver (GARMIN GPSMAP 64csx). Then, video recordings were used to record
substrates on the seafloor during 20 min at each site. Static images were extracted at
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Table 2 Relationship between seven categories of substrate architectural characteristics (physical
structure) and 25 substrate types.

Substrate architectural characteristics Substrate
Eave-like space Corymbose Acropora
Tabular Acropora

Foliose coral

Dead corymbose Acropora

Dead tabular Acropora

Dead foliose coral
Large inter-branch space Staghorn Acropora

Dead staghorn Acropora
Overhang by fine branching Branching Acropora
structure

Bottlebrush Acropora

Non-acroporid branching coral
Pocillopora

Dead branching Acropora

Dead bottlebrush Acropora

Dead non-acroporid branching coral

Dead Pocillopora

Overhang by coarse structure Massive coral
Dead massive coral
Rock

Uneven structure without large space or overhang Other coral

Dead other coral

Soft coral
Flat Coral rubble

Sand
Macroalgae Macroalgae

10-second intervals by QuickTime Player software (version 7.6), yielding 121 static images
for each site. For each image, the substrate at the center of the static image was recorded.

Substrate categorization and definition of substrate architectural
characteristics

Substrates were categorized into 25 types and substrate architectural characteristics
(physical structure) were categorized into seven types with some modification from
several previous studies (Gardiner & Jones, 2005; Wilson et al., 2008; Nanami, 2020; Doll
et al., 2021) as follows (Table 2, Fig. 3): (1) eave-like space, (2) large inter-branch space,
(3) overhang provided by protrusion of fine branching structure, (4) overhang by coarse
structure, (5) uneven structure without large space or overhang, (6) flat and (7) macroalgae.

Data analysis for substrate association
The analyses were conducted in two steps. The first step was to clarify the associations
between fish species and the seven types of substrate architectural characteristics (physical

Nanami (2024), PeerdJ, DOI 10.7717/peerj. 17772 8/36
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Figure3 (A—G) Schematic diagrams of the seven types of substrate architectural characteristics (phys-
ical structure) and some examples of substrates for each type. Light green areas represent spaces that are
potentially utilized by fishes as sleeping site. For more details about relationships between structural char-
acteristics and substrates, see Table 2. All substrate photographs were taken by the author (A. Nanami).
Full-size G DOI: 10.7717/peerj.17772/fig-3

structure). The second step was to clarify the associations between fish species and the 25
substrate types.

Fish associations were analyzed by using “resource selection ratio” (Manly et al.,
2002). The approach follows previous studies that have applied this index to examine
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Figure 4 (A—C) Relative frequency (%) of fish individuals associated with substrates and substrate
availability for the three parrotfish species (Chlorurus microrhinos,C. spilurus and Hipposcarus longi-
ceps). Left and right figures represent results using the seven types of substrate architectural characteristics
(physical structure) and 19 substrate types, respectively. Numbers adjacent to bars represent the number
of individuals that were associated with the focal substrate. For right figures, data from 19 substrate types
among 25 the substrate types are shown, since no fish individuals were associated with the remaining six
substrate (continued on next page...)

Full-size Gal DOI: 10.7717/peerj.17772/fig-4
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Figure 4 (...continued)

types (other coral, dead other coral, soft coral, coral rubble, sand and macroalgae). An asterisk indicates
that since one individual utilized two categories of substrates (the two substrates were closely located to
each other and one focal fish individual was associated with both substrates simultaneously), 0.5 individu-
als were assigned for each substrate as substrate association. All fish photographs were taken by the author
(A. Nanami).

the quantitative degree of substrate association of coral reef fishes to specific substrate
characteristics (e.g., Gardiner & Jones, 2005; Wilson et al., 2008; Doll et al., 2021; Nanami,
2023). This index also shows 95% confidence intervals, which can be used to test the
statistical significance of the substrate association of fishes for each substrate type.

The resource selection ratio was calculated as:

w; = 0;/m;

where w; is the resource selection probability function, o; is the proportion of the ith
substrate that was used by a focal fish species, and 7; is the proportion of the ith substrate that
was available in the study area (Manly et al., 2002). For multiple comparisons, Bonferroni
Z corrections were used in order to calculate the 95% confidence interval (CI) for each w;.
The formula used to calculate the 95% CI was:

95% CI = Za/2k+/[0i(1—=0;) /(Us3)]

where Z; /5 is the critical value of the standard normal distribution corresponding to an
upper tail area of a/2k, a is 0.05, k is the number of substrate categories, and U is the total
number of individuals of the focal fish species. Substrates with w; £95% CI above and
below 1 indicate a significantly positive and negative association, respectively. Substrates
with w; £95% CI encompassing 1 had no significant positive or negative association.

In addition, the standardized selection ratio that indicates relative degree among
substrates for habitat selection was calculated as follows:

B,’ =Wi/ZWi-

If a focal species shows Bi and Bj for i th and jth substrates, ith substrate is selected with
Bi/Bj times the probability of jth substrate.

Both species level (17 species) and family level (four families) data analyses were
performed.

Variations in substrate associations among different fish size classes
To investigate the variations in substrate associations among different fish size classes, fish
individuals were divided into three size classes as follows: (1) TL < 29 cm (smaller-sized);
(2) TL = 30-39 cm (medium-sized) and (3) TL > 40 cm (larger-sized). Then, their degree
of substrate association was analyzed. Five species (Scarus schlegeli, Chaetodon trifascialis, C.
lunulatus, C. ephippium and C. auriga) were excluded from the analysis, since total length
of the all individuals were 29 cm or less for the five species.

Nanami (2024), PeerdJ, DOI 10.7717/peerj. 17772 11/36
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Data preparation prior to analysis

All data for substrate associations by fish were obtained from the 19 study sites were pooled
for the analysis. Although all data for substrate availability from the 19 sites were also
pooled for the analysis, a modification was applied due to the difference in observation
time among the 19 sites (see substrate availability raw data; Supplemental Information).
Namely, substrate compositions at sites with longer fish observation durations should be
included with greater proportions whereas substrate compositions at sites with shorter
time observation durations should be included with lower proportions. The degree of the
proportion was assigned by the observation duration at the site. Thus, the modification
was as follows:

19 k19
Opverall proportion ofith substrate = ZP,:,- T; / Z ZPij T;
j=1 i=1 j=1

where Pj; is the proportion of ith substrate at site j, T; is the observation duration (minutes)
at site j, and k is the number of substrate types (k = 7 for seven types of substrate
architectural structure and k = 25 for twenty-five substrate types).

Overall trend in substrate association

To summarize species-specific differences in substrate association, a principal component
analysis (PCA) and cluster analysis using the group average linkage method with the Bray—
Curtis similarity index was applied based on the number of fishes by including data from
the seventeen fish species. Analyses were performed using PRIMER (version 6) software
package (Clarke ¢» Warwick, 1994). For plotting the PCA score of each fish species, data
about nocturnal substrate association were also shown by pie charts. Additional PCA was
performed to clarify the variations in substrate associations among the above-mentioned
three fish size classes.

RESULTS

Parrotfishes

Chlorurus microrhinos was primarily associated with large inter-branch space (staghorn
Acropora) and overhang by coarse structure (rock) (Fig. 4A). Significant positive
associations with large inter-branch space and overhang by coarse structure were found
(Table 3, Table S1). However, no significant substrate associations were found for any types
of 25 substrates (Table 4, Table S2). For size difference, smaller-sized and medium-sized
individuals were primarily associated with large inter-branch space (staghorn Acropora),
whereas larger-sized individuals were primarily associated with overhang by coarse structure
(rock: Fig. S1).

Chlorurus spilurus was primarily associated with eave-like space (corymbose Acropora
and tabular Acropora), large inter-branch space (staghorn Acropora) and overhang by
fine branching structure (non-acroporid branching coral) (Fig. 4B). Significant positive
associations with eave-like space and large inter-branch space were found (Table 3,
Table S1). For eave-like space, no significant substrate-specific associations were found
(Table 4, Table S2). For large inter-branch space, significant positive association with
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staghorn Acropora was found (Table 4, Table S2). In contrast, a significant negative
association with overhang by coarse structure (rock) was found (Tables 3 and 4, Tables S1,
S2). By size, smaller- and medium-sized individuals showed relatively greater proportion of
association with eave-like space (corymbose and tabular Acropora) and large inter-branch
space (staghorn Acropora), respectively (Fig. 52).

Hipposcarus longiceps was primarily associated with large inter-branch space (staghorn
Acropora) and overhang by coarse structure (rock) (Fig. 4C). Significant positive and
negative associations with large inter-branch space (staghorn Acropora) and overhang by
fine branching structure were found, respectively (Tables 3 and 4, Tables S1, S2). By size,
smaller-, medium- and larger-sized individuals showed relatively greater proportion of
association with large inter-branch space (staghorn Acropora), overhang by coarse structure
(rock) and eave-like space (tabular and dead tabular Acropora), respectively (Fig. S3).

Scarus ghobban was primarily associated with eave-like space (corymbose Acropora) and
overhang by coarse structure (massive coral and rock) (Fig. 5A). Although this species
showed respectively significant positive and negative associations with overhang by coarse
structure and overhang by fine branching structure (Table 3, Table S1), no significant
substrate-specific associations were found (Table 4, Table S2). All three size classes showed
relatively greater proportion of association with overhang by coarse structure (massive
coral and rock: Fig. 54).

Five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatus and S. schlegeli) were
primarily associated with eave-like space (corymbose Acropora and tabular Acropora)
(Figs. 5B, 5C, 6A—6C) and showed a significant positive association with the eave-like space
(Table 3, Table S1). Three species (S. forsteni, S. oviceps and S. rivulatus) and one species
(S. schlegeli) showed positive associations with tabular Acropora and corymbose Acropora,
respectively (Table 4, Table S2). In contrast, S. niger did not show any substrate-specific
associations (Table 4, Table S2). For size difference, two size classes (smaller- and larger-
sized) individuals of S. forsteni showed greater proportion in association with eave-like
space (tabular Acropora) while medium-sized fish were associated with overhang by coarse
structure (rock) , respectively (Fig. S5). Smaller-sized individuals of S. niger showed greater
proportion in association with eave-like space (mainly tabular Acropora) and medium-sized
with large inter-branch space (staghorn Acropora), respectively (Fig. S6). In contrast, all
size classes of the two species (S. oviceps and S. rivulatus) were primarily associated with
eave-like space (mainly tabular Acropora: Figs. S7, S8).

Surgeonfishes

Naso unicornis was primarily associated with overhang by coarse structure (rock: Fig. 7A)
and showed a significant positive association with the substrate (Tables 5 and 6, Tables S3,
S4). A significant negative association with overhang by fine branching structure was also
found (Table 5, Table S3). By size, smaller- and larger-sized individuals were primarily
associated with eave-like space (dead tabular Acropora) and overhang by coarse structure
(rock), respectively (Figs. S9A, S9C). Medium-sized individuals was associated with both
eave-like space (tabular Acropora) and overhang by coarse structure (rock: Fig. S9B).
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Figure 5 (A—C) Relative frequency (%) of fish individuals associated with substrates and substrate
availability for the three parrotfish species Scarus ghobban, S. forsteni and S. niger). Left and right fig-
ures represent results using the seven types of substrate architectural characteristics (physical structure)
and 19 substrate types, respectively. Numbers adjacent to bars represent the number of individuals that

were associated with the focal substrate. For right figures, data from 19 substrate types among 25 the sub-

strate types are shown, since no fish individuals were associated with the remaining six substrate types
(other coral, (continued on next page...)

Full-size Gal DOI: 10.7717/peerj.17772/fig-5
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Figure 5 (...continued)

dead other coral, soft coral, coral rubble, sand and macroalgae). An asterisk (*) indicates that since one in-
dividual utilized two categories of substrates (the two substrates were closely located to each other and one
focal fish individual was associated with both substrates simultaneously), 0.5 individuals were assigned for
each substrate as substrate association. All fish photographs were taken by the author (A. Nanami).

Naso lituratus was primarily associated with eave-like space (tabular Acropora) and
overhang by coarse structure (rock: Fig. 7B). Significant positive association with eave-like
space was found (Table 5, Table S3). However, no significant substrate associations were
found for any types of 25 substrates (Table 6, Table S4). For size difference, smaller- and
medium-sized individuals showed greater proportion in association with eave-like space
(mainly tabular Acropora) and overhang by coarse structure (rock), respectively (Fig. S10).

Groupers

Plectropomus leopardus was primarily associated with eave-like space (corymbose and
tabular Acropora) and overhang by coarse structure (rock: Fig. 8A). This species showed
a significant positive association with eave-like space (Table 5, Table S3), although no
significant substrate-specific associations were found (Table 6, Table S4). In contrast,

a significant negative association with flat (coral rubble) was found (Tables 5 and 6,
Tables S3, 54). By size, medium-sized individuals were primarily associated with eave-like
space (mainly corymbose and tabular Acropora: Fig. S11B). However, no clear trends were
found for smaller- and larger-sized individuals (Figs. S11A, S11C).

Epinephelus ongus was primarily associated with overhang by fine branching structure
(non-acroporid branching coral) and overhang by coarse structure (rock: Fig. 8B). A
significant positive association with overhang by coarse structure were found (Table 5,
Table S3). However, for substrate-specific associations, significant positive and negative
associations with non-acroporid branching coral and branching Acropora were respectively
found (Table 6, Table S4). All size class individuals showed greater proportions in
association with overhang by coarse structure (rock: Fig. S12). Some individuals were
also associated with overhang by fine branching structure (branching coral) and this trend
was observed for all size classes (Fig. S12).

Butterflyfishes

Chaetodon trifascialis was primarily associated with eave-like space (tabular Acropora) and
large inter-branch space (staghorn Acropora: Fig. 9A) and showed significant positive
associations with these substrates (Tables 5 and 6, Tables S3, S4). This species also showed
a significant negative association with overhang by coarse structure (rock: Tables 5 and 6,
Tables S3, S4).

Chaetodon lunulatus was primarily associated with large inter-branch space (staghorn
Acropora: Fig. 9B) and showed a significant positive association with the substrate (Tables 5
and 6, Tables S3, S4). This species also showed a significant negative association with
overhang by coarse structure (rock: Tables 5 and 6, Tables S3, S4).

Chaetodon ephippium was associated with large inter-branch space (staghorn Acropora)
and overhang by coarse structure (dead massive coral and rock: Fig. 9C) and showed a

Nanami (2024), PeerdJ, DOI 10.7717/peerj. 17772 19/36
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Figure 6 (A—C) Relative frequency (%) of fish individuals associated with substrates and substrate

availability for the three parrotfish species Scarus oviceps, S. rivulatus and S. schlegeli). Left and right
figures represent results using the seven types of substrate architectural characteristics (physical struc-
ture) and 19 substrate types, respectively. Numbers adjacent to bars represent the number of individuals
that were associated with the focal substrate. For right figures, data from 19 substrate types among 25 the
substrate types are shown, since no fish individuals were associated with the remaining six substrate types
(other coral, (continued on next page...)

Full-size Gal DOI: 10.7717/peerj.17772/fig-6
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Figure 6 (...continued)

dead other coral, soft coral, coral rubble, sand and macroalgae). An asterisk (*) indicates that since one in-
dividual utilized two categories of substrates (the two substrates were closely located to each other and one
focal fish individual was associated with both substrates simultaneously), 0.5 individuals were assigned for
each substrate as substrate association. All fish photographs were taken by the author (A. Nanami).

significant positive association with large inter-branch space (Table 5, Table S3). However,
no significant substrate associations were found for any types of 25 substrate types (Table 6,
Table S4).

Chaetodon auriga was primarily associated with eave-like space (corymbose Acropora
and dead tabular Acropora) and overhang by coarse structure (rock: Fig. 9D). However, no
significant associations with any structural characteristics and substrate types were found
(Tables 5 and 6, Tables S3, 54).

Family-level substrate associations

Parrotfishes were primarily associated with eave-like space (corymbose Acropora and
tabular Acropora), and some individuals were also associated with large inter-branch space
(staghorn Acropora), overhang by fine branching structure (non-acroporid branching
coral) and overhang by coarse structure (rock: Fig. S13A). Parrotfishes showed significant
positive associations with eave-like space (corymbose Acropora, tabular Acropora and dead
tabular Acropora) and large inter-branch space (staghorn Acropora) were found, whereas
showed a significant negative association with overhang by fine branching structure
(bottlebrush Acropora: Tables S5-S8).

Surgeonfishes were primarily associated with overhang by coarse structure (rock), and
some individuals were also associated with eave-like space (tabular Acropora) and overhang
by fine branching structure (non-acroporid branching coral) (Fig. S13B). Surgeonfishes
showed significant positive associations with eave-like space (tabular Acropora) and
overhang by coarse structure (rock: Tables S5-58). A significant negative association with
overhang by fine branching structure was also found (Tables S5, S7).

Groupers were primarily associated with overhang by coarse structure (rock), and
some individuals were associated with eave-like space (corymbose Acropora and tabular
Acropora), large inter-branch space (staghorn Acropora) and overhang by fine branching
structure (non-acroporid branching coral: Fig. S13C). For seven types of substrate
architectural characteristics, groupers showed significant positive and negative associations
with overhang by coarse structure and flat, respectively (Tables S5-S8). However, for 25
substrate types, a significant positive associations with non-acroporid branching corals
was found (Tables S6, S8). In contrast, significant negative associations with branching
Acropora, bottlebrush Acropora and coral rubble were found (Tables S6, S8).

Butterflyfishes were primarily associated with large inter-branch space (staghorn
Acropora), and some individuals were also associated with eave-like space (corymbose
Acropora and tabular Acropora), overhang by fine branching structure (branching Acropora)
and overhang by coarse structure (rock: Fig. S13D). Butterflyfishes showed a significant
positive association with large inter-branch space (staghorn Acropora), whereas a significant
negative association with overhang by fine branching structure (bottlebrush Acropora)
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Figure 7 (A-B) Relative frequency (%) of fish individuals associated with substrates and substrate
availability for the two surgeonfish species. Left and right figures represent results using the seven types
of substrate architectural characteristics and 19 substrates types, respectively. Numbers adjacent to bars
represent the number of individuals that were associated with the focal substrate. For right figures, data
from 19 substrate types among the 25 substrate types were shown, since no fish individuals were associ-

ated with the remaining six substrate types (other coral, dead other coral, soft coral, coral rubble, sand and
macroalgae). All fish photographs were taken by the author (A. Nanami).
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Figure 8 (A-B) Relative frequency (%) of fish individuals associated with substrates and substrate
availability for two grouper species. Left figures represent results using the seven types of substrate ar-
chitectural characteristics. Right figures represent results using 24 and 19 substrate types for Plectropomus
leopardus and Epinephelus ongus, respectively. Numbers adjacent to bars represent the number of individ-
uals that were associated with the focal substrate. For right figures, data from 24 and 19 substrate types
among 25 substrate types are shown, since no fish individuals were associated with the remaining one and
six substrate types for Plectropomus leopardus (microalgae) and Epinephelus ongus (other coral, dead other

coral, soft coral, coral rubble, sand and macroalgae), respectively. All fish photographs were taken by the
author (A. Nanami).
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Figure 9 Relative frequency (%) of fish individuals associated with substrates and substrate availabil-
ity for the four butterflyfish species. Left and right figures represent results using the seven types of sub-
strate architectural characteristics and 19 substrate types, respectively. Numbers adjacent to bars repre-
sent the number of individuals that were associated with the focal substrate. For right figures, data from 19
substrate types among the 25 substrate types are shown, since no fish individuals were associated with the

remaining six substrate types (other coral, dead other coral, soft coral, coral rubble, sand and macroalgae).
All fish photographs were taken by the author (A. Nanami).
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Figure 10 Results of principal component analysis (PCA) for substrate association of fishes based on
five types of substrate architectural characteristics (A, B) and 18 substrates types (C, D). In A and C, the
vectors for two types of architectural characteristics (uneven structure and macroalgae) and seven sub-
strate types (other coral, dead bottlebrush Acropora, dead foliose coral, dead other coral, soft coral, sand
and macroalgae) are not shown, since no fish individuals were associated with the substrates. Divisions
into multiple groups in (B) and (D) were based on the results of cluster analysis (Fig. S2). Pie charts in
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fish species names are shown as abbreviations (Ch.mic, Chlorurus microrhinos; Ch.spi: Chlorurus spilurus;
H.lon, Hipposcarus longiceps; S.gho, Scarus ghobban; S.for, Scarus forsteni; S.nig, Scarus niger; S.ovi, Scarus
oviceps; S.riv, Scarus rivulatus; S.sch, Scarus schlegeli; N.uni, Naso unicornis; N lit, Naso lituratus; P.leo,
Plectropomus leopardus; E.ong, Epinephelus ongus; C.tri, Chaetodon trifascialis; C.lun, Chaetodon lunulatus;
(continued on next page...)
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Figure 10 (...continued)

C.eph, Chaetodon ephippium; C.arg, Chaetodon auriga). In (D), “Other substrates” includes 11 substrate
types (bottlebrush Acropora, non-acroporid branching coral, foliose coral, Pocillopora, dead corymbose
Acropora, dead tabular Acropora, dead staghorn Acropora, dead branching Acropora, dead non-acroporid
branching coral, dead Pocillopora and coral rubble). For details about data, see Supplemental Information
31 and Supplemental Information 38.

(Tables S5-58). A significant negative association with massive coral was also found
(Tables S6, S8).

Overall trend of substrate association including the seventeen

fish species

For the seven types of substrate architectural characteristics, PCA revealed that three
architectural characteristics (eave-like space, large inter-branch space and overhang by
coarse structure) showed major contributions for nocturnal fish associations (Fig. 10A).
Cluster analysis revealed the 17 species could be divided into six groups (Fig. 10B, Fig. S14A).
Two species (Scarus ghobban and Naso unicornis: group B), one species (Chaetodon
lunulatus: group D) and five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatus and
S. schlegeli: group F) showed greater proportions in association with overhang by coarse
structure, large inter-branch space and eave-like space, respectively. Other fishes belonging
to three groups (group A, C and E) did not show greater proportion in association with
any particular architectural characteristics. For fish size difference, four species (Ch.
microrhinos, H. longiceps, S. niger and N. unicornis) showed relatively clear variations

in substrate associations among difference size classes (Fig. S15). For the two species
(Ch. microrhinos and H. longiceps), the main associated substrates changed from large
inter-branch space to overhang by coarse structure as fish size increased (Figs. S15B,
S15D). In contrast, the other two species (S. niger and N. unicornis) showed that the main
associated substrates changed from eave-like space to large inter-branch space (Fig. S15G)
and from eave-like space to overhang by coarse structure as fish size increased (Fig. S15K),
respectively.

For 25 substrate types, PCA revealed that three substrate types (tabular Acropora,
staghorn Acropora and rock) showed major contributions for nocturnal fish associations
(Fig. 10C). Cluster analysis revealed 17 species could be divided into eight groups (Fig. 10D,
Fig. S14B). Naso unicornis (group A), Chaetodon lunulatus (group D), Scarus schlegeli
(group F) and two species (Scarus oviceps and S. rivulatus: group H) showed greater
proportions in association with rock, staghorn Acropora, corymbose Acropora and tabular
Acropora, respectively. Other fishes belonging to four groups (group B, C, E, G) and one
species (Chaetodon trifascialis: group D) did not show greater proportions in association
with any particular substrate type. For fish size difference, two species (Ch. microrhinos
and H. longiceps,) showed that the main associated substrates changed from staghorn
Acropora to rock as fish size increased (Figs. S16B, S16D). Two species (S. niger and N.
unicornis) showed that the main associated substrates changed from tabular Acropora to
staghorn Acropora (Fig. S16G) and from dead tabular Acropora to rock as fish size increased
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(Fig. S16K: dead tabular Acropora was shown as “other substrates” in Fig. S16K. See also
Fig. S9), respectively.

DISCUSSION

This study examined the nocturnal substrate association of 17 species from four fish
groups, which was the first study in the North Pacific (Okinawan coral reef). The results of
the present study could provide useful information as to what types of substrates should
be protected and/or restored for fish habitat at nighttime as well as fishing locations for
nighttime spear-fishing. It could also provide some guidance for the development and
design of artificial reefs.

Parrotfishes
Most previous studies have conducted diurnal observations to clarify the spatial distribution
in relation to topographic and substrate characteristics (Hoey ¢ Bellwood, 2008; Herndndez-
Landa et al., 2014; Nanami, 2021) and foraging substrates (Nanami, 2016; Bonaldo ¢
Rotjan, 2018). However, substrate associations for parrotfish species have not been
sufficiently examined due to their highly diurnal activity (e.g., Welsh ¢ Bellwood, 2012).
Pickholtz et al. (2023) examined nocturnal substrate associations of seven parrotfish species
in the Indian Ocean (Gulf of Aqaba), in which substrates were categorized into five types
(branching coral, massive coral, soft coral, rock and artificial structure). In contrast, the
present study conducted in the North Pacific (Okinawa) and categorized substrates into
seven types in terms of architectural characteristics and 25 types in terms of more precise
aspects (e.g., coral morphology, live coral or dead coral, and other non-coralline substrates).

Three species (Chlorurus microrhinos, C. spilurus and Hipposcarus longiceps) showed
significant positive associations with large inter-branch space (staghorn Acropora). Pickholtz
et al. (2023) revealed nocturnal substrate associations for three closely related species in
the Indian Ocean (C. gibbus, C. sordidus and H. harid) and showed some individuals of the
three species were associated with branching corals. These results suggest that substrates
that were positively associated with parrotfishes are similar among closely related species.

Scarus ghobban and Chlorurus microrhinos showed significant positive associations with
overhang by coarse structure. Nanami & Nishihira (2004) showed smaller-sized fish species
(pomacentrids and juveniles of labrids of less than 10 cm in length) were associated with
the base of massive corals as shelter due to their overhang structure. In contrast, Kerry ¢
Bellwood (2012) suggested that massive corals showed less contribution for concealment of
larger-sized fishes (over 10 cm in length), although a possibility that large massive corals
might provide canopy effects by overhang at the base of the colony. The results of this
study support this suggestion. Namely, overhangs provided by coarse structure serve to
some degree as sleeping sites for larger-sized parrotfish individuals (TLs were 24 cm and
over).

The remaining five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatusand S. schlegeli)
and C. spilurus showed significant positive associations with eave-like space (primarily
provided by corymbose Acropora and tabular Acropora). As Kerry ¢ Bellwood (2012)
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suggested, it was revealed that tabular corals provide concealment for some parrotfish
species as sleeping sites due to their canopy structure.

Surgeonfishes

Naso unicornis and N. lituratus showed significant positive associations with overhang by
coarse structure mainly provided by rock and eave-like space being mainly provided by
tabular Acropora, respectively. Some N. unicornis were also associated with eave-like space
provided by tabular Acropora. These findings suggest that canopy structure (overhangs and
tabular structure) should be conserved as sleeping sites for these species.

Naso unicornis and N. lituratus are main fishery targets in coral reefs (Bejarano et al.,
2013; Taylor et al., 2014) and nighttime spear fishing is a common method to catch inactive
individuals of these species (Taylor et al., 2014). Conservation of critical substrates as
sleeping sites could serve as fishing locations that can be utilized by fishermen.

Groupers

Plectropomus leopardus is diurnally active and nocturnally inactive (Matley, Heupel &
Simpfendorfer, 2015). Broad-scale diurnal survey (several and several-tens of kilometer
scale) have shown that a greater coverage of branching Acropora was positively related
with greater density of this species (Nanami, 2021). In contrast, this species showed a
significant positive association with eave-like space mainly provided by corymbose and
tabular Acropora as sleeping sites. These results suggest that substrate types that affect
the spatial distribution of the species may be different between daytime and nighttime.
Plectropomus leopardus is a carnivore and its main prey items are small-sized fishes (St
John, 1999). Since such small-sized fishes were often associated with branching Acropora,
this species might occur at sites with greater coverage of branching Acropora for foraging
during daytime but utilize eave-like space as sleeping sites during nighttime. Thus, multiple
substrate types are needed to satisfy the ecological requirements of this species during both
daytime and nighttime.

Diurnal observations revealed that large-sized Epinephelus ongus individuals (over 18
cm TL) showed a significant positive association with large inter-branch space that was
created by staghorn Acropora (Nanami et al., 2013). In contrast, nocturnal observations by
this study showed positive associations with overhang by coarse structure. Nanami et al.
(2018) suggested that this species is nocturnally active since a greater home range size was
observed at nighttime than daytime. This species might be associated with overhang by
coarse structure for ambush foraging at nighttime.

Butterflyfishes

Chaetodon trifascialis showed positive associations with eave-like space (tabular Acropora)
and large inter-branch space (staghorn Acropora). This species is an obligate coral polyp
feeder and mainly feeds on polyp of tabular Acropora and corymbose Acropora (Pratchett,
2005; Nanami, 2020). This suggests that coral species providing large inter-branch space are
important architectural structure as sleeping sites for this species, which was not indicated
by diurnal observations for the clarifying foraging behavior. In contrast, tabular Acropora
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was also utilized as sleeping sites, suggesting that tabular Acropora is essential as both
foraging and sleeping sites for this species.

Chaetodon lunulatus showed a significant positive association with large inter-branch
space being provided by staghorn Acropora. In contrast, diurnal observations revealed that
this species mainly feeds on polyps of encrusting, massive and non-acroporid corals, which
do not provide large inter-branch space (Pratchett, 2005; Nargelkerken et al., 2009; Nanami,
2020). This indicates that C. lunulatus depends on staghorn Acropora as sleeping sites but
it is not utilized as a foraging substrate, suggesting that various types of corals are essential
for this species.

Chaetodon ephippium showed a significant positive association with large inter-branch
space being provided by staghorn Acropora. In contrast, this species showed frequent bites
on the surface of coral rubble, dead coral and rock (Nargelkerken et al., 2009; Nanami,
2020), probably due to catch invertebrates (Sarno, Shimizu & Nose, 1984; Pratchett, 2005).
This indicates that substrates utilization by C. ephippium was different between daytime
and nighttime.

Chaetodon auriga did not show any significant associations with substrates. This species
is facultative coral polyp feeder (Sano, Shimizi & Nose, 1984) and showed a greater number
of bites on coral rubble and rocks (Nanami, 2020). Since this species was mainly associated
with four types of substrate architectural characteristics (eave-like space, large inter-branch
space, overhang by fine branching structure and overhang by coarse structure) but not
associated with other three types of architectural characteristics (uneven surface, flat and
macroalgae), this species utilized substrates with complex physical structure as sleeping
sites. Since these four types of substrate architectural characteristics are provided by both
live corals and rock, such substrates with greater complexity should be conserved as sleeping
site for the species.

Overall, this study revealed large inter-branch spaces that created by staghorn Acropora
was important physical structure as sleeping sites for the three species (C. trifascialis,

C. lunulatus and C. ephippium) and substrates with complex physical structure were
also important as sleeping site for C. auriga, which have not been revealed by diurnal
observations in previous studies.

Variations in substrate association among different fish size classes
Four species showed clear variations in nocturnal substrate associations among different
size classes. The two species (Ch. microrhinos and H. longiceps,) and one species (N.
unicornis) showed that their main associated substrates changed from large inter-branch
space (staghorn Acropora) to overhang by coarse structure (rock), and from eave-

like space (dead tabular Acropora) to overhang by coarse structure (rock) as fish size
increased, respectively. These results suggest that smaller- and larger-sized individuals were
respectively associated with fine and coarse habitat structures, and various types of substrate
architectural characteristics are needed for the various sizes of the three species as nocturnal
sleeping sites. In contrast, S. niger showed that the main associated substrates changed from
eave-like space (mainly tabular Acropora) to large inter-branch space (staghorn Acropora)
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as fish size increased, suggesting that various types of acroporid corals are needed for the
various sizes of the species as nocturnal sleeping sites.

Implication about coral community degradation induced by climate
change

Numerous studies have shown that coral species belonging to the genus Acropora is
highly susceptible to coral bleaching by climate change (e.g., Marshall ¢ Baird, 2000;
Loya et al., 20015 McClanahan et al., 2004) and such degradation of the acroporid coral
community causes significant declines of fish populations in coral reefs (Pratchett et

al., 2008). All 17 species were nocturnally associated with acroporid coral, although

the degree of association was species-specific. Especially, five species (Scarus oviceps, S.
rivulatus, S. schlegeli, Chaetodon lunulatus and C. trifascialis) showed a greater proportion
in association with acroporid corals. Some other species (Chlorurus microrhinos, C. spilurus,
Hipposcarus longiceps, S. forsteni, S. niger, Naso lituratus, Plectropomus leopardus, Chaetodon
ephippium) also showed positive associations with acroporid corals to some extent. In
contrast, almost all fish species (except for one individual of P. leopardus) showed no
associations with uneven structure without large space or overhang, flat and macroalgae,
indicating fish avoidance of the three substrate architectural structural categories. These
results suggest that the effects on coral degradation would negatively impact on the
availability of sleeping sites for some fish species. This degradation would also cause a
decline in fishing grounds for night spear fishing.

CONCLUSIONS

This study revealed nocturnal substrate associations of four coral reef fish groups
(parrotfishes, surgeonfishes, groupers and butterflyfishes). In particular, the four fish
groups were primarily associated with three architectural characteristics (eave-like space,
large inter-branch space and overhang by coarse structure) that were primarily provided
by tabular and corymbose Acropora, staghorn Acropora, and rock, which have not been
revealed by diurnal observations in previous studies. These new insights will provide useful
ecological information for effective conservation of biodiversity and ecosystem services
of coral reef fishes. In particular, the death of acroporid corals caused by coral bleaching
would decrease the availability of sleeping sites for some fish species. Consequently, it could
lead to population declines of these fish species. Consideration of fish nocturnal substrate
associations could provide more effective strategies for conservation and restoration of
coral assemblages.
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