

養殖スサビノリ(Porphyra yezoensis)突然変異株における変異遺伝子の解析

メタデータ	言語: Japanese
	出版者:水産大学校
	公開日: 2024-10-11
	キーワード (Ja):
	キーワード (En): Porphyra yezoensis; pigmentation
	mutation; gene conversion; retrotransposon
	作成者: 水上, 譲, 川崎, 武仁, 村瀬, 昇, 国本, 正彦
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2011833
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution 4.0 International License.

養殖スサビノリ(Porphyra yezoensis)突然変異株 における変異遺伝子の解析

水上 讓*1·川崎武仁*1·村瀬 昇*1·國本正彦*2

Analysis of mutant genes in the cultured mutant strain of Porphyra yezoensis

Yuzuru Mizukami^{*1}, Takehito Kawasaki^{*1}, Noboru Murase^{*1}, and Masahiko Kunimoto^{*2}

Nucleotide sequences in four loci of the *Porphyra yezoensis* genome were compared between wild and green-type pigmentation mutant strains. Approximately 3 to 10 % of nucleotides varied in two loci by substitutions, additions and deletions of nucleotides. However, in the other two loci, nucleotide sequences were identical between the two strain types although previous data of RAPD analysis suggested variations in the nucleotide sequences. Southern-blot analysis showed that all of the nucleotide sequences found in the 4 loci were repeated over the genome and the frequency of repetition differed between the two strain types. Nucleotide sequences in two loci showed 100 % nucleotide similarities with those of retrotransposons in higher plants. These results suggested that the spontaneous mutation of *Porphyra yezoensis* was brought about by retrotransposons as well as nucleotide conversions.

Key words : Porphyra yezoensis, Pigmentation mutation, gene conversion, retrotransposon

スサビノリ (Porphyra yezoensis) 養殖におけるノリ (海苔) の生産性は海況等の影響により年毎に著しく変動する^{1.2)}。 安定生産のためには海況等に見合った多様な品種による栽 培が望まれるが,生長性に関する品種以外に実用的な品種 は開発されていない。最近では新品種作出のための選抜, 交配および突然変異育種等に関する新技術の開発が行政レ ベルでも望まれるようになった^{3~5)}。

突然変異育種は古くから農業用植物の改良や花卉育種に 利用されている主要な育種法の1つであるが⁶⁰,大型紅藻 類育種への応用例は極めて少なく,また,突然変異育種の 基礎となる変異遺伝子の解析についても紅藻類では殆ど行 われていない。

著者らは先に記載した論文⁷⁾の中で,スサビノリ突然 変異株ゲノムにおいて遺伝子変異が生じている領域をいく つか明らかにし、相同性検索の結果、これらの領域の1部 は高等植物レトロトランスポゾンに高い類似性を持つこと を報告した。本研究では、変異領域の塩基配列およびそれ らのゲノム上での反復頻度を野生型株および自然発生緑色 突然変異型株間で比較して遺伝子構造の変異を明らかにす るとともに、変異領域の1部を被子植物レトロトランスポ ゾンと比較し、両者の相同性を塩基配列レベルで検証した。

2 材料および方法

2.1 藻 体

本研究では野生型(正常型)養殖種(養殖名:佐賀5号) を野生型株とし,緑色突然変異型養殖種(養殖名:ナラワ スサビミドリメ^{&-10)})を自然発生突然変異型株として用い た。これらの藻体は有明海にて養殖されたものを佐賀県有 明水産センターから譲り受けたもので,自家受精によって

²⁰⁰⁶年1月16日受付. Received January 16, 2006.

^{*1} 水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

^{*2} 水産総合研究センター中央水産研究所(National Research Institute of Fisheries Science, Fisheries Research Agency)

フリー糸状体とした後,継代培養した。また,一部のフリー 糸状体を-20℃に保存してDNA抽出に用いた。

2.2 DNAの抽出および変異領域塩基配列の 解析

DNA抽出キット (DNAeasy Plant Maxi Kit, Qiagen社) を用いて糸状体からDNAを抽出した。方法の詳細につい ては前報告¹¹に記載した。また,前報告¹¹では緑色突然 変異型株ゲノムにおける変異領域複数を推察した。本研究 では、これらの変異領域のうちから任意に4領域を選び、 塩基配列を野生型株および緑色突然変異型株間で比較し た。変異が推察されたDNA領域の塩基配列⁷⁾をもとに4 組のプライマーセット(Table1)を作成し、これらのプ ライマーセットと野生型株および突然変異型株DNAを用 いたPCR^{II)}を行なって、それぞれのDNA断片を得た。こ れらのDNA断片をクローン化した後、塩基配列を解析し、 遺伝子解析ソフト (DNAsis-Mac Ver 3.4, Hitachi Softwareengineering社)によって野生型株および突然変異型 株間で塩基配列を比較した。また、これらDNA断片のゲ ノム上の反復頻度を野生株および突然変異株間で比較する ため、これらのDNA断片をプローブとして全DNAのサザ ンハイブリダイゼーションを行った。プローブの標識およ びハイブリダイゼーションシグナルの検出には標識・検出 キット(ECL Direct Nucleic Acid Labeling and Detection System, Amersham Biosci. 社)を用いた。

2.3 レトロトランスポソンの解析

上記のプライマーセットを用いて増幅したDNA断片の うち,A-11-0.4-mおよびA-16-0.7-mと名づけた2領域の 塩基配列と類似な配列を遺伝子データバンクDDBJ(DNA Data Bank of Japan)によって検索し,類似度が最も高い 被子植物レトロトランスポゾンと塩基配列を比較した。

3 結 果

3.1 変異領域塩基配列の比較

Fig.1はA-12-1.2-wおよびC-20-0.8-mと名づけた領域 について塩基配列を両株間で比較したものである。これら の領域では塩基の欠失,挿入,置換など多くの塩基に変異 が見られ,特にA-12-1.2-w領域における変異は解析した 150塩基の10%に達していた。Fig.2にA-11-0.4-mおよび A-16-0.7-m領域の塩基配列を示した。これらの領域は RAPD解析で変異が推察された領域であるが,解析した約 330および450塩基中では1塩基の変異も見られなかった。

3.2 特異塩基配列の反復頻度

上記の4領域で見たDNA塩基配列のゲノム上での複雑 度および量的変異をサザンハイブリダイゼーション法で調 べた。Fig.3は、4領域のDNA断片をプローブとした野 生型株および緑色突然変異型株全DNAのハイブリダイ ゼーションパターンを示したものである。4領域のプロー

Table 1 . Primers used for amplifying and sequencing of the DNA regions named
A-11-0.4-m, A-12-1.2-w, A-16-0.7-m and C-20-0.8-m in the genome of
P. yezoensis.

Primer	5'- 3' sequence	
A-11-0.4-m		
Forward	GTGGAGATGATTCAGGATGG	
Reverse	ACCAAGTCAGGTCCAACTCG	
A-12-1.2-w		
Forward	CCTTGGGACGTTCCCGTTGA	
Reverse	CCGAGATCGCAAGGCCTGCT	
A-16-0.7-m		
Forward	AATGTATTGGGGCACAAGCG	
Reverse	CGCGAATTCAGTACTCCGGC	
C-20-0.8-m		
Forward	CCGCTGGGAGGTCTACGATA	
Reverse	ACATGGATCCAGACGAGGGC	

(a)	
Wild	AAGGTCTTCAGTAAGCTCCCCTCAAGCCAGCAGGCACTGGCAAGTGCGGGCGG
Mutant	AAGGTC TCAGTAAG TCCCCTCAAGCCAGCAGGCATGGGCAAGAACGGGCGGGCAACAG
	GCCACCCCGACTCAGTCGGGAGTTCGCTCGGGTGACACTTCTGATGTGGGTGG
	GCCCTTCCGACTCAGTCGGGAGTTCAGTCGGGTGACACTTCTGTAGTGGGTGG
	TCTGGCCACCGTGTGGTACACTCAACGGGA -150
	TCCGGCTACCGTGTGGTACACTCAACGGGA
(b)	
Wild	GTATACCTCAGCCACGTTAACGTGGCTCCCTTGTAGATTCAGGTCCCTGACGATAGCTGT -60
Mutant	GTATACCTCAGCCACGTTAACGTGGCTCCCTTGTAGCGTCAGGTCCCTGACGATAGCTGT
	CTGTCCTCTCTTAGTCCCGTCGGCCTCTTGCAGCTTGACGGTCCTCCGGCCCGGCCGG
	CTGTCCTCTCTCGTCCGGCCGCCCCCTCGACGGTCCTCCGGCCCGGCCGG
	TTCATCAACGTGAACGTTGATGAAGGTGCACCCCAGTATGCAGGGCACAGATAGAGTCTC -180
	GTCATCAACGTGAACGTTCATGAAGGTGCACCCCAGTATGCAGGGCACAGATTGAGTCTC
	ACACACCAGGAAGTCAACTTCCGTAGTGAGCTCCCCGATGGTGACCTGCAGCGACATCGCT -240
	ACACACCACGAAGTCAACTTCCGTAGTGAGCTCCCCGATGGTGACCTGCAGCGACATCGCT
	GCGGTCGTACGAATGAGACGACCATTCGCA CCTTGATCGTGGGTCCCCGAGCAACTCTG -300
	GCCGTCGTACGAATGAGACCACCATTCGAATCCTTGATCGTGGGTCCCCGAGCAACTCTG
	ACTCGCGGGA -310
	ACTCGCGGGA

Fig. 1. Nucleotide sequences of the A-12-1.2-w and C-20-0.8-m regions in the genomes of wild and mutant strains. (a): A-12-1.2-w region, (b): C-20-0.8-m region. Shaded areas indicate homologous nucleotides in the alignments. Numbers indicate nucleotide positions.

(a)	
wild	ACCAAGTCAGGTCCAACTCGGGTGACGCTACCAATCAAGGGCGAATTCCAGCACACTGGC -60
Mutant	ACCAAGTCAGGTCCAACTCGGGTGACGCTACCAATCAAGGGCGAATTCCAGCACACTGGC
	GGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGT -120
	GGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGT
	TTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAA -180
	TTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGGAAGCATAA
	AGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCAC -240
	AGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCAC
	TGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCG -300
	TGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCG
	CGGGGAGAGGCGGTTTGCGTATTGGGCGCTC -331
	CGGGGAGAGGCGGTTTGCGTATTGGGCGCTC
(b)	
wild	GATTGGTAGCGTCACCCGAGTTGGACCTGACTTGGTAAGGGCGAATTCTGCAGATATCCA -60
Mutant	GATTGGTAGCGTCACCCGAGTTGGACCTGACTTGGTAAGGGCGAATTCTGCAGATATCCA
	TCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCG -120
	TCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCG
	TATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC -180
	TATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC
	CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCC -240
	CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCC
	CGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTA -300
	CGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTA
	GCGGCGCATT AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA -360
	GCGGCGCATT AAGCGCGGCG GGTGTGGTGG TTACGCGCAG CGTGACCGCT ACACTTGCCA
	GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCTACG TTCGCCGGCT -420
	GCGCCCTAGC GCCCGCTCCT TTCGCTTTCT TCCCTTCCTT TCTCGCTACG TTCGCCGGCT
	TTCCCCGTCA AGCTCTAAAT CGGGGGCTTC -450
	TTCCCCGTCA AGCTCTAAAT CGGGGGCTTC

Fig. 2. Nucleotide sequences of the A-11-0.4-m and A-16-0.7-m regions in the genomes of wild and mutant strains. (a): A-11-0.4-m region, (b): A-16-0.7-m region. Shaded areas indicate homologous nucleotides in the alignments. Numbers indicate nucleotide positions.

Fig. 3 . Southern-blot analysis of genomic DNA with four DNA fragments specific for the wild or the mutant strains as probes.

The numbers above lanes indicate DNA from wild (lane 1 and 3) and mutant (lane 2 and 4) strains. The genomic DNA was digested by EcoR I (lane 1 and 2) or BamH I (lane 3 and 4) and coelectrophoresed. Southern hybridization was carried out with A-11-0.4-m (a), A-12-1.2-w (b), A-16-0.7-m (c) and C-20-0.8-m (d) fragments as probes by reprobing of the same DNA filter. The size of the DNA standard is indicated in Kb on the left sides.

ブすべてにおいてハイブリダイゼーションシグナルが DNA全域に散在して見られ,特に,C-20-0.8-m領域DNA プローブとのハイブリダイゼーションでは極めて強いシグ ナルの散在が観察された。また,Fig.3に示した実験では, 野生型株および緑色突然変異型株間で等量の全DNAを用 いたが,C-20-0.8-m領域プローブの場合を除き,ハイブ リダイゼーションシグナルは変異株に比べ野生株の方に幾 分強く観察された。

3.3 変異領域塩基配列とレトロトランス ポゾンの類似性

先の論文⁷⁾で,変異領域A-11-0.4-mおよびA-16-0.7-m と類似な遺伝子として被子植物レトロトランスポゾンが検 索されたことを報告した。Fig. 4 にはA-11-0.4-m領域と *Cicer arietium*(ヒヨコマメの1種)(AJ535749)レトロト ランスポゾンRTドメインの塩基配列,また,Fig. 5 には A-16-0.7-m領域と*Arabidopsis thaliana*(シロイヌナズナ A-11-0.4-m AGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATT -60 Cicer arietinum AGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATT

> TAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGC -180 TAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGC

CAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAG -216 CAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAG

Fig. 4. Comparison of nucleotide sequences between the A-11-0.4-m region of P.yezoensis genome and the Cicer arietinum retrotransposon. Shaded areas indicate homologous nucleotides in the alignments. Numbers indicate nucleotide positions

A-16-0. 7-m AATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGAC -60 Arabidopsis AATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGAC

TGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCAC -103 TGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCAC

Fig. 5. Comparison of nucleotide sequences between the A-16-0.7-m region of P.yezoensis genome and the Arabibopsis thaliana transposon. Shaded areas indicate homologous nucleotides in the alignments. Numbers indicate nucleotide positions.

の1種)(AC007018)レトロトランスポゾンRTドメイン の塩基配列を比較した。これらの領域ではそれぞれ約220 塩基および100塩基について比較したが,いずれもそれぞ れのレトロトランスポゾンに100%の塩基類似性を示した。

4 考 察

A-12-1.2-wおよびC-20-0.8-m領域では約150~310塩基 の中で10~15個の塩基が変異していた。これらの変異は突 然変異として特異な形質等の変異に関与している変異か, あるいは、スサビノリ野生型株間に見られる塩基レベルの 変異、即ち、DNA多型^{11.12}の範囲に入る変異なのかは不 明である。今後は、多くの野生株でA-12-1.2-wおよび C-20-0.8-m領域の塩基配列を解析して、この領域におけ るDNA多型を明らかにし、本研究で解析した変異と比較 することが必要である。 A-11-0.4-mおよびA-16-0.7-m領域には塩基の変異が全 く検出されなかった。これらの領域は,RAPD解析におい て野生型株および突然変異型株間でバンドパターンの違い が観察された領域である⁷⁾。Fig.2に示した結果から,こ れらのパターンの違いは塩基の置換など塩基変異によって 生じたものでなく,これらの領域のゲノム上での反復頻度 の違いによるものと推察された。

変異領域にある塩基配列(DNA断片)のゲノム上での 量的変異を調べたところ、4領域にある塩基配列(または 類似の配列)はすべてゲノム上に散在していることが示唆 された。特に、C-20-0.8-m領域に見られたDNA配列は極 めて高度にゲノム上に散在していることが示唆された。ま た、Fig.3に示した結果から、C-20-0.8-m領域DNAにつ いてははっきりしなかったが,他の領域のDNA(あるいは, それらに類似したDNA)配列については、いずれも野生 型株および緑色突然変異型株間でゲノム上での反復頻度に 差異があることが示唆された。しかし, Fig.3に示したサ ザンハイブリダイゼーション実験では,野生型株および緑 色突然変異型株間で等量のDNA量を用いたものの,標準 となる遺伝子を用いたDNAの定量実験を行っていない。 そのため,反復頻度の量的差異については今後さらに精査 が必要に思われた。

2つの変異領域で解析されたDNA配列は高等植物レト ロトランスポゾンと全く同じ塩基配列を含んでいた。この ことから、これら領域のDNAはレトロトランスポゾン(の 1部)と考えられた。体制,細胞内構造,生活環等が高等 緑色植物とは著しく異なり、また、進化学上最も下等で未 分化な紅藻類にあっても, 突然変異にレトロトランスポゾ ンが大きく関わり、高等緑色植物と同様の塩基配列と機能 を持っていることは大変興味深いことであった。また、 A-12-1.2-wおよびC-20-0.8-m領域のDNA配列は, Fig. 3 に示したサザンハイブリダイゼーション実験において多コ ピーの存在が示唆されたにもかかわらず、これらと相同な 高等植物レトロトランスポゾンが検索されなかった。この ことから、A-12-1.2-wおよびC-20-0.8-m領域DNA配列は 紅藻類あるいはスサビノリに特異なトランスポゾン(ある いは、それらの1部)の可能性もあり、これらDNA領域 の広範で詳細な構造解析に興味がもたれた。

謝 辞

養殖アマノリ(品種佐賀5号)および緑色変異型株(ナ ラワスサビミドリメ)の葉状体および糸状体をご提供いた だいた佐賀県有明水産センターの川村嘉応博士ならびに横 尾一成,三根崇幸の各氏に深く感謝申し上げます。

文 献

1)川村嘉応:平成12年度佐賀県有明海のノリ不作と珪藻の大増殖:海苔と海藻, 62, 1-12 (2001).

- 2)藤井弘治:有明海減産の影響,海苔と海藻, 62, 13-16 (2001).
- 3)地域バイオテクノロジー実用化技術研究開発促進事業 (水産業関係),成果概要.水産庁研究部研究課(1996).
- 4)先端技術等地域実用化研究促進事業,成果概要.農林 水産省技術会議事務局,(2002).
- 5) 平成17年度先端技術を活用した有明ノリ養殖業強化対 策研究委託事業,技術開発推進委員会資料.水産総合 研究センター中央水産研究所 (2005).
- 6) 鵜飼保雄:植物育種学,東京大学出版会 (2003).
- 水上 譲,川崎武仁,村瀬 昇,國本正彦:養殖スサビノリ(Porphyra yezoensis)の緑色突然変異株における 変異遺伝子の検索.水産大学校研究報告,54,181-188 (2006).
- 8) 三浦昭雄:ノリの色彩の変異体と色彩の遺伝. 遺伝,32, 11-16 (1978)
- 9)三浦昭雄,国藤恭正:スサビノリの色彩変異型の遺伝 子分析.遺伝,34,14-20 (1980).
- Miura: Present trends and perspective in *Porphyra* (Nori) breeding. Genetics of pigmentation mutants in *Porphyra yezoensis* development origin of variegated gametophytic thalli. *Suisann Ikushu*, 15, 19-30 (1990).
- 11) Y. Mizukami, Y. Kaminisi, M. Kunimoto, M. Kobayashi, N. Murase, and H. Kito: Comparison of partial nucleotide sequence in the exonic region of a small subunit ribosomal RNA gene for discrimination of laver (*Porphyra*) species and cultivars. *Fisheries Sci.*, 64, 886-891 (1998).
- 12) Y. Mizukami, K. Kito, Y. Kaminisi, N. Murase, and M. Kunimoto: Nucleotide sequence variation in the ribosomal internal transcribed spacer regions of cultivated (cultivars) and field-collected thalli of *Porphyra* yezoensis. Fisheries Sci., 65, 788-789 (1999).