

ブリの鰓換水

メタデータ	言語: Japanese
	出版者:水産大学校
	公開日: 2024-10-11
	キーワード (Ja):
	キーワード (En): yellowtail; flow velocity; gill slit;
	mouth; secondary lamella; ventilation
	作成者: 山元, 憲一, 半田, 岳志, 横田, 源弘, 吉田, 聡
	メールアドレス:
	所属: 水産研究・教育機構
URL	https://fra.repo.nii.ac.jp/records/2011870

This work is licensed under a Creative Commons Attribution 4.0 International License.

ブリの鰓換水

山元憲一1节,半田岳志1,横田源弘2,吉田 聡3

Ventilation in the yellowtail, Seriola quinqueradiata (Perciformes : Carangidae)

Ken-ichi Yamamoto^{1†}, Takeshi Handa¹, Motohiro Yokota² and Satoshi Yoshida³

Abstract : The ventilation of the yellowtail, Seriola quinqueradiata (active marine teleost) was examined by directly measuring the ventilation volume, the water pressures in the buccal and opercular cavities, and the difference of the water pressures under the normoxic and hypoxic conditions. The flow velocities in the mouth, the gill slit and the secondary lamella, and the mean flow areas of the water course over the three parts were calculated using the values of the parameters measured. Under severe hypoxic condition, the ventilation volume and the mean flow velocities were higher than those under the normoxic condition. The ventilation volume increased to 5.00 l/min/kg which was nearly 5 times as high as 1.01 l/min/kg under the normoxic condition. The mean flow velocities were elevated from 39.7cm/sec to 71.5cm/sec at the mouth and from 33.6cm/sec to 50.3cm/sec at the secondary lamella. However, the velocity at the gill slit was 35.5-38.4cm/sec and roughly constant. The mean flow areas were also broardened from 0.69cm 2 to 1.59cm 2 at the mouth, from 0.83cm 2 to 1.33cm 2 at the secondary lamella, and from 0.69cm 2 to 4.19cm 2 at the gill slit. From the relational expression of the mean flow areas and the mean flow velocities, the hydraulic pressures at which the buccal and opercular valves begin to open were estimated: -1.7mmH₂O or higher for the buccal valve, and 6.6mmH 2O or higher for the opercular valve. Moreover, the hydraulic pressure at which the water begins to flow between the secondary lamellae was assumed to be 4.9mmH 2O or higher.

Key word : Yellowtail ; flow velocity ; Gill slit ; Mouth ; secondary lamella ; Ventilation

緒 言

魚類は、口腔と鰓蓋を交互に拡張・収縮させて呼吸表面 (二次鰓弁の間)に水を流してガス交換を行っている。こ のような鰓換水の機構は、口腔と鰓腔をそれぞれ口腔ポン プと鰓腔ポンプとしてモデル化して、口腔と鰓腔の水圧変 化、それらの水圧差の変化、および口腔弁と鰓蓋弁の開閉 の様子からそれぞれのポンプの働きを4つの段階に分けて 説明がなされている¹⁻³⁾。つまり、水は口腔ポンプを拡張 させて口腔内の水圧がマイナスになると口腔弁が開いて外 界より口腔内に流入し、口腔内と鰓腔内の水圧差がプラス の間に二次鰓弁間を口腔から鰓腔側へ流れ、鰓腔ポンプを 収縮させて鰓腔内の水圧がプラスになると鰓蓋弁が開いて 外界へ流出する。そのようにして二次鰓弁の間を通過させ る水量(換水量)は多くの魚種で調べられている⁴⁾。呼吸 運動に伴う口腔や鰓腔内の水の流速はコイCyprinus carpio⁵⁾ やブラックバスMicropterus salmoides⁶⁾で測定されている。 二次鰓弁間の水の流速は,換水量と形態計測で求めた二次 鰓弁間の断面積を用いた計算から推測されている^{7.8)}。二 次鰓弁間の水流については,二次鰓弁の形や呼吸運動に伴 う口腔と鰓腔の水圧差の変化から推測されている¹⁰⁻¹³⁾。一 方,カラスガイの一種であるAnodonta cygneaの幼生グロキ ディウムがブラウントラウトSalmo trutaの鰓の一部に寄生 していることから,鰓換水は,いつもは二次鰓弁の一部に

2007年8月21日受付. Received August 21, 2007.

† 別刷り請求先 (corresponding author): yamagenk@fish-u.ac.jp

¹ 水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

² 水産大学校海洋機械工学科(Department of Ocean Mechanical Engineering, National Fisheries University)

³ 水産大学校水産学研究科(Graduate School of Fisheries Science, National Fisheries University)

水を流し,換水量が増加すると水を流す部位を広げて行われていると推測されている⁹⁾。

しかし、口腔ポンプと鰓腔ポンプの収縮・拡張に伴って 変化させる口腔へ流入する流速、鰓腔から排出する流速、 および呼吸運動に伴う二次鰓弁間での流速などについて は、テラピアOreochromis niloticusに関する報告¹⁴⁾を見るの みである。そこで、本研究では、代表的な遊泳性魚類の一 つであるブリSeriola quinqueradiataを用いて、酸素分圧を 順次低下させることによって換水量を増加させ、口腔の水 圧、鰓腔の水圧およびそれらの水圧差などを測定して口、 二次鰓弁間および鰓裂の各部位の平均流速および平均流路 面積などを解析した。また、それらの結果から、口腔弁お よび鰓蓋弁の開く時の水圧、二次鰓弁間を水が流れるのに 必要な最低の水圧、および呼吸1周期における口、二次鰓 弁および鰓裂の部分の流速の変化などを解析した。

材料および方法

供試魚には,体重1,065±72(平均値±標準偏差,以降 同様に示す)g,全長44.8±1.7cm,体長36.7±1.4cmのブ リ9個体を用いた。それらは水産大学校の水路型の水槽 (40t)で6か月間養成後,室内のパンライト水槽(2t) でブリ養成用の配合飼料を毎日体重の約1%投与しながら 1か月以上水温26.1±0.1℃で飼育した。

手術は、魚を24時間絶食にした後、濃度1:5.000のキナ ルジン溶液で麻酔をかけ、体重 (BW, kg), 全長および 体長を計測後,ポリエチレン細管(外径2mm,長さ30mm, No.6, Hibiki) を口腔に1本と鰓腔に2本装着した¹⁵⁻¹⁷⁾。 手術後,魚を呼吸箱に設置して (Fig.1),15時間回復さ せた後、測定を開始した。なお、呼吸箱は、長さ52cm、 幅 9 cm, 高さ13 cmのものを用い, 水槽 (長さ83 cm, 幅21 cm, 高さ22cm)に設置し、水槽を黒いビニールで覆って遮光 した。この水槽には、入水側と排水側に入水および排水に よる水面の振動を除去すための板を設置した。同水槽への 流入水の量は51/minとし、酸素分圧は窒素ガスの曝気に よって1時間毎に5段階に順次低下させた。この流入水の 溶存酸素量 (Co2, ml/l) および酸素分圧 (Po2, mmHg) は, 1時間毎に流入水を酸素瓶および注射筒(25ml)で採水し、 それぞれWinkler法およびDOメーター (Chemical Microsensor-I, Diamond Electro-tech) で測定した。

口腔へ吸入される水の酸素分圧(Pi, o², mmHg) および 鰓腔内の水の酸素分圧(Pe, o², mmHg) は,酸素電極を設 置した筒へ口腔への吸入水を40分間流した後,三方コック を切り替えて鰓腔内の水の一部を10分間流す操作を繰り返 し,この間のそれぞれの酸素分圧を記録計(MacLab/8, ADI)で連続記録した。Pi, o²およびPe, o²値はいずれも三 方コックを切り替える前の10分間の値を平均して求めた。 この時,酸素電極を設置した筒へ流す水量は5*ml*/minと

Fig. 1. Diagram of experimental system. 1 : supply of seawater, 2 : filter, 3 : water reservoir, 4 : aeration, 5 : thermostat, 6 : equilibration column, 7 : flow meter, 8 : N2 bottle, 9 : laser displacement meter, 10 : column used to adjust the water pressure, 11 : three way cock, 12 : column used to absorb the vibration of water level in the tank, 13 : electrode of oxygen meter, 14 : probe of electromagnetic flow-meter, 15 : oxygen meter, 16 : pressure transducer, 17 : carrier amplifier, 18 : electromagnetic flow-meter, 19 : recorder, 20 : tank with the respiration chamber.

した。

換水量(Vg, l/min/fish)は、プローブ(内径20mm, 5 l/min, FF-200T, 日本光電)を電磁血流計(MFV-3200, 日 本光電)に接続して記録計(MacLab/8, ADI)で連続記 録し、次の段階の酸素分圧へ低下させる前の10分間の平均 値を計算し、体重当たりの値(l/min/kg)に換算した。

呼吸数(RF, stroke/min)は、次に述べるようにして連 続記録した口腔の水圧変化の周期を次の段階の酸素分圧へ 低下させる前の10分間について1時間毎に数えて求めた。

呼吸1回の換水量(Vsv, ml/cycle/fish)は,

Vsv=Vg/RF

から計算し、体重当たりの値(*l*/stroke/kg) に換算した。 酸素摂取量(Vo₂, *ml*/min/kg)は、

Ýo₂ = (Pi, o₂-Pe, o₂) · Co₂/Po₂) · Vg/BW
 から計算した。

酸素利用率(U,%)は,

U=100・(Pi, o²-Pe, o²)/Pi, o² から計算した。

口腔および鰓腔の水圧は、血圧トランスジューサー (LPU-0.1A,日本光電)を前置増幅器(AP-601G,日本 光電)に接続し、記録計(MacLab system, ADI)で連続記 録した。記録計への読み込み速度は、水圧および換水量な どのいずれも毎秒40回とした。なお、これらの水圧は呼吸 箱を設置した水槽の水面を0mmH2Oとして測定した。本 機器の水圧の較正は、呼吸箱を設置した水槽の水面を0 mmH2Oとして調節した後、水面を5mm,10mmと上昇さ せて行った。水面の各高さは、水を同水槽から緩衝用の筒 (Fig.1の12)へ導いて水槽への注水や魚の呼吸運動など による水面の振動を除去した後、この水を三方コックを介 して顕微鏡を改良して作製した筒(Fig.1の10)へ導いて 設定した。この時の各高さはレーザー変位計(3Z4M-J10, オムロン)を用いて1/100mmの精度で調節した。

流速, 流路面積

口, 鰓裂および二次鰓弁間の平均流速および平均流路面 積は, 口腔の水圧, 鰓腔の水圧および口腔と鰓腔の水圧差 (以降, 水圧差と表す)を用いて, 次のようにして求めた。 口腔の水圧, 鰓腔の水圧および水圧差がいずれもプラス側 とマイナス側を周期的に変動していることから, 口, 鰓裂 および二次鰓弁間での水の流れは間欠流であることが明ら かである。そこで, 水は, 口では水圧がマイナスの間に, 鰓裂では水圧がプラスの間に, および二次鰓弁間では水圧 差がプラスの間に流れていると仮定した。また, それぞれ の部位での流速の瞬間値(V, cm/sec)は、定常流で成立 する流動方程式を基礎として、

(mmH₂O) は水圧あるいは水圧差を示す。

一般に, 流路面積Fを通過する瞬間体積流量Qは,

Q=αFV=SV ・・・・・・・・(2) で与えられる。ここで, αは流量係数を,SおよびαFは 有効流路面積を示す。

呼吸1回のうち水の流れている時間 ΔT (Fig. 2のT₁あるいはT₂) で平均化した時間平均流量Qは,

 $S = 1 / \Delta T \cdot \int_{0}^{\Delta T} S dt$ · · · · · · · · (4) で計算される値である。また, \bar{V} は ΔT で平均化した時間 平均流速(以降, 平均流速と表す)を示し,

 $\bar{\mathbf{V}} = 1/\Delta \mathbf{T} \cdot \int_{0}^{\Delta T} \mathbf{V} dt = 1/\Delta \mathbf{T} \cdot \int_{0}^{\Delta T} \sqrt{2 g \Delta \mathbf{H}} dt \cdot \cdot (5)$ で計算される値である。

したがって,平均流速⊽(cm/sec)は式(5)から求め られる。すなわち,瞬時水圧△H(t)の平方根の値を求め, この時間平均値を用いることによって,平方根誤差¹⁹⁾を 含まない平均流速が計算される。実際には,口,鰓裂およ び二次鰓弁間の部位における平均流速および平均流路面積 は次のようにして求めた。まず,次の段階の酸素分圧へ低 下させる前の10分間について,口腔の水圧のマイナス側, 鰓腔の水圧のプラス側および水圧差のプラス側の瞬時水圧 △H(t)のそれぞれの平方根の時間平均の値を求める。同 時に、口腔の水圧のマイナス側, 鰓腔の水圧のプラス側お

Fig. 2. The change of the water pressure in one cycle (T) of respiratory movement. T 1 (plus) and T 2 (minus) indicate the change of water pressure.

よび水圧差のプラス側の呼吸1周期のそれぞれの所要時間 (Fig. 2)の平均値 (△T, sec)を求める。

各部位における平均流速は,瞬間水圧△H(t)の平方根 の時間平均の値と呼吸1周期の所要時間の平均値を式

(5)に代入して求めた。

Fig. 3. Changes of minute volume of gill ventilation (Vg), amount of oxygen uptake (Vo²), respiratory frequency (Rf), stroke volume of gill ventilation (Vsv) and percent oxygen utilization at the gill (U) with decrease of oxygen pressure (Po²) in the yellowtail Seriola quinqueradiata.

 $\bar{S} = Vg/\bar{V} \cdot (T/\Delta T) \cdot 1/60 \cdot \cdot \cdot \cdot \cdot (7)$ から求めた。ここで, T (sec) は呼吸 1 周期の時間 (Fig. 2), Vg (*ml*/min/fish) は毎分換水量を示す。

結 果

毎分換水量は、酸素分圧が152.9±2.2mmHgから37.6± 1.5mmHgへ低下するのに伴って1.01±0.191/min/kgから 5.00±0.471/min/kgへ5倍の増加を示した(Fig. 3)。酸素 摂取量は、酸素分圧の低下に伴って3.53±0.40ml/min/kg から4.26±0.29ml/min/kgへわずかに増加した(Fig. 3)。 呼吸数は、酸素分圧が低下してもほぼ一定で、酸素分圧 152.9±2.2mmHgの場合(89±7 stroke/min)と酸素分圧 37.6±1.5mmHgの場合(91±3 stroke/min)とで有意な差 が認められなかった(t=0.788, P>0.1, Fig. 3)。呼吸 一回の換水量は、酸素分圧の低下に伴って11.5±2.7ml/ min/kgから54.8±4.6ml/min/kgへ5倍の増加を示した (Fig. 3)。酸素利用率は、酸素分圧の低下に伴って80.0 ±2.6%から71.7±2.6%へ減少した(Fig. 3)。

毎分換水量と呼吸数および呼吸一回の換水量の関係を見 ると,毎分換水量が増加しても呼吸数はほぼ一定していた が,呼吸1回の換水量は直線的に増加した(Fig.4)。

Fig. 4. Relation of respiratory frequency (Rf) and stroke volume of gill ventilation (Vsv) to minute volume of gill ventilation (Vg) in the yellowtail.

Fig. 5. Records of water pressure (P) in the buccal (fine lines) and opercular cavities (broken lines), and difference of water pressure between buccal cavity and opercular cavity (heavy lines) which was changed with the respiratory movement under normoxic (above) and hypoxic (below) conditions in the yellowtail.

口腔の水圧, 鰓腔の水圧および口腔と鰓腔の水圧差の記 録例を毎分換水量が小さい酸素分圧152.9mmHgの場合と 最も大きい37.6mmHgについてFig.5 に示した。口腔およ び鰓腔の水圧はいずれも酸素分圧が低下すると振幅が増大 したが,振幅の型には大きな変化が認められなかった。し かし,口腔と鰓腔の水圧差は低酸素の状態になって振幅が 増大すると,呼吸運動1周期中に出現する2つの山が1つ へと変化した。

口腔の平均水圧は、プラス域では酸素分圧が152.9± 2.2mmHgから37.6±1.5mmHgへ低下するのに伴って12.1 ±1.0mmH2Oから25.0±2.1mmH2Oへ増大し、マイナス域 では-8.7±1.2mmH2Oから-26.2±3.5mmH2Oへ減少し た(Fig. 6)。鰓腔の平均水圧は、プラス域では酸素分圧 が低下してもほぼ一定で,酸素分圧152.9±2.2mmHgの場 合(7.0±1.6mmH₂O)と酸素分圧37.6±1.5mmHgの場合 (8.0±1.4mmH₂O) とで有意な差が認められなかった (t=1.411, P>0.1)。しかし、マイナス域では-13.9± 2.1mmH2Oから-30.8±2.0mmH2Oへ減少した (Fig. 6)。 水圧差は、プラス域では5.8±0.7mmH2Oから15.5± 1.3mmH2Oへ増大したが、マイナス域ではほぼ一定で、0 mmH₂Oを示していた(Fig. 6)。それらの変化を毎分換水 量との関係でみるとFig.7に示したように、口腔の平均水 圧は毎分換水量の増加に伴ってプラス域およびマイナス域 にそれぞれ増大および減少した。鰓腔の平均水圧は、プラ

Fig. 6. Changes of average water pressures in the buccal and opercular cavities, and difference of the pressure between buccal cavity and opercular cavity in the zones of plus and of minus with decreasing oxygen pressure (Po₂) in the yellowtail.

Fig. 7. Relationship between minute volume of gill ventilation (Vg) and average water pressures in the buccal and opercular cavities, and difference of the pressure between them in the yellowtail.

ス域ではほぼ一定していたが,マイナス域では減少した。 水圧差は,プラス域では増大したが,マイナス域ではほぼ 一定していた。

平均流速は、口では酸素分圧が152.9±2.2mmHgから 37.6±1.5mmHgへ低下するのに伴って39.7±3.9cm/secか ら71.5±3.8cm/secへ1.8倍に増大し、鰓裂では35.5± 2.3cm/secから38.4±3.5cm/secへわずかに増大し(t=2.145, P < 0.05),二次鰓弁間では33.6±1.2cm/secから 50.3±4.5cm/secへ1.5倍の増大を示した(Fig.8)。それ らの変化を毎分換水量との関係でみるとFig.9に示したよ うに、口および二次鰓弁間では、平均流速は毎分換水量の 増加に伴って増大したが、鰓裂では毎分換水量が増加して もほぼ一定していた。

平均流路面積は、口では酸素分圧が152.9±2.2mmHgか ら37.6±1.5mmHgへ低下するのに伴って0.69±0.12cm²か

Fig. 8. Changes of mean water-velocity (V) at the mouth, the gill slit and the secondary lamella with decreasing oxygen pressure (Po₂) in the yellowtail.

ら1.59±0.15cm²へ2.3倍に増大し, 鰓裂では0.69± 0.21cm²から4.19±0.56cm²へ6.1倍に, 二次鰓弁間では 0.38±0.07cm²から1.33±0.19cm²へ3.5倍増大した (Fig.10)。それらの変化を毎分換水量との関係でみると Fig.11に示したように, 平均流路面積は口, 鰓裂および二 次鰓弁間でともに毎分換水量の増加に伴って増大したが, 特に鰓裂では他の2つに比較して著しく大きな増大を示し た。

平均流路面積と平均流速の関係は、口では、

 \bar{V} =34.456 \bar{S} +18.162 (R²=0.841) ・・・・(8) 鰓裂では、

√=0.635S+35.876 (R²=0.077) ・・・・(9)
二次鰓弁では、

 \bar{V} =15.443 \bar{S} +30.942 (R²=0.680) ・・・・ (10) で表された (Fig.12)。

Fig. 9. Relationship between minute volume of gill ventilation (Vg) and mean water-velocities (V) at the mouth, the gill slit and the secondary lamella in the yellowtail.

Fig.10. Changes of the average areas where water flow over (S) in the mouth, the gill slit and the secondary lamella with decreasing the oxygen pressure (Po₂) in the yellowtail.

Fig.11. Relationship between the average areas (S) in the mouth, the gill slit and the secondary lamella and minute volume of gill ventilation (Vg) in the yellowtail.

Fig.12. Relationship between the average flow areas (S) and mean water-velocities (V) in the mouth, the gill slit and the secondary lamella in the yellowtail.

考 察

テラピアでは酸素飽和の状態で13.1cm/sec,低酸素の状 態で26.5cm/secを示している¹⁴⁾。流速を直接測定した結果 によると、口に近い部分の流速は、ブラックバスでは10~ 30cm/secの範囲で変化していることが報告されている⁶⁾。 コイでは、酸素飽和の状態においては0~20cm/secの範 囲で、低酸素の状態においては0~40cm/secの範囲で変 化していることが報告されている⁵⁾。本研究での値は、換 水量の小さな酸素飽和の状態(39.7cm/sec)では前記の 魚種の変動幅に入っているが、換水量が増加した低酸素の 状態(71.5cm/sec)では著しく大きな値を示している。

鰓裂の部位での平均流速は、テラピアでは酸素飽和の状 態で24.6cm/sec,低酸素の状態で27.2cm/secを示してい る¹⁴⁾。本研究での値は、酸素飽和(35.5cm/sec)および低 酸素の状態(38.4cm/sec)のいずれもテラピアよりも大 きな値を示している。しかし、低酸素に伴う換水量の増加 に対して平均流速がわずかに増大した変化は、テラピアと 同じであった。

二次鰓弁間を流れる水の平均流速は、酸素飽和の状態で 33.6cm/sec, 低酸素の状態で50.3cm/secを示した。テラ ピアでは、酸素飽和の状態で16.3cm/sec,低酸素の状態 で30.8cm/secであると報告されている14)。これらのことか ら、ブリは二次鰓弁間を流れる水の平均流速がテラピアよ りも大きいことが明らかとなった。しかし、Lauder⁶⁾は, 二次鰓弁の形態計測の結果および換水量の測定結果^{7.8)}か ら計算すると、二次鰓弁間を流れる水の流速はコイでは 0.03-0.3cm/seck, White sucker Catostromus ommersoni では0.04~0.85cm/secに, Brown bullhead Ictalurus nebulosusでは0.035~0.44cm/secに、コクチバス Micropterus dolomieuでは0.11cm/secになると報告している。Hughes²⁰⁾ は魚類では5cm/secであると推測している。Stevensand Lighyfoot¹¹⁾ はカツオKatsuwonus pelamisでは0.128~ 0.748cm/secになると報告している。形態計測に基づいて 計算されたこれらの値は、本研究のものよりも著しく小さ い。その原因は、本研究では毎分換水量の増加に伴って二 次鰓弁の部位の流路面積が増大することを考慮して計算し たが、形態計測に基づく推測では鰓全体の二次鰓弁間を水 が常時流れていると仮定して計算していることにあると考 えられる。

水が二次鰓弁間を通過する時間は、ブリの二次鰓弁の長 さ(0.448~0.858mm)²¹⁾と二次鰓弁間を流れる水の平均 流速から計算すると0.448/50.3x1000=9 msec~0.858/ 33.6x1000=30msecとなる。テラピアでは 3~6 msecであ ると報告されている¹⁴⁾。これらのことから, ブリは二次鰓 弁間を通過する時間がテラピアよりも大きな値を示すこと が明らかとなった。しかし,二次鰓弁の形態と換水量から 推測した値では, Malte¹²⁾は,水が二次鰓弁間を通過する 時間はDogfish *Scyliorhinus stellaris*では 5 msec以下である と報告している。Randall and Daxboeck²²⁾は多くの魚でお よそ100~300msecであると報告している。Stevens and Lighyfoot¹¹⁾は,カツオでは160~940msecであると報告し ている。ブリでの値は,板鰓類であるDogfishとほぼ同じ であるが,他の硬骨魚類に比べて著しく小さな値を示して いる。この原因も,先に二次鰓弁間の流速で述べたように, 水が常時鰓全体の二次鰓弁間を流れていると仮定して計算 していることにあると考えられる。

ブリは、毎分換水量が酸素分圧の低下に伴って5倍増加 した状態で平均流路面積および平均流速を、口ではそれぞ れ2.3倍、1.8倍、二次鰓弁間ではそれぞれ3.5倍、1.5倍増 大させた。鰓裂では平均流路面積を6.1倍増大させたが、 平均流速はほぼ一定していた。しかし、いずれの部位とも に換水量を増加させる場合には、流路面積の増大率を大き くして流速をできるだけ小さく保つように調節している。 特に、鰓裂ではその調節が著しく、流速がほぼ一定になる ように流路面積を調節していることが明らかとなった。

一方, Paling⁹⁾は、カラスガイの一種であるAnodonta cygneaの幼生グロキディウムはブラウントラウトの鰓全体 ではなく、一部に多く寄生していることから、水は鰓全体 の二次鰓弁間を常時流れているのではなく、換水量の増加 に伴って流れる部分を拡大させていると推測している。ブ リでは、二次鰓弁の平均流路面積は換水量の増加に伴って 増大する変化を示している。これらのことから、ブリは、 低酸素に遭遇した場合には換水量の増加に伴って二次鰓弁 間の水が流れる部分を増大させてガス交換を行う鰓面積を 拡大すると同時に、二次鰓弁間を通過する水の流速の増大 を小さく押さえて二次鰓弁での水と血液の接する時間をで きるだけ長く保つように調節していると考えられる。

Hughes²⁾は、口腔弁が開くのは口腔内の水圧がマイナ スに転じた時、鰓蓋弁が開くのは鰓腔内の水圧がプラスに 転じた時に受動的に行われると報告している。このことを 考慮して、プリの場合の口腔弁と鰓蓋弁が開くのに必要な 水圧、および二次鰓弁間を水が流れるのに必要な最小水圧 を次のように計算した。口、鰓裂および二次鰓弁間を水が 流れ始める瞬間の流速は平均流路面積(\bar{S} , cm²)と平均流 速(\bar{V} , cm/sec)の関係式(式 8, 9, 10)から判断すると, いずれも平均流路面積が零のときの平均流速に相当すると 考えられる。そこで、それぞれの式に $\overline{S}=0$ を代入すると、 口では $\overline{V}=18.162$ cm/sec, 鰓裂では $\overline{V}=35.876$ cm/sec, 二 次鰓弁間では $\overline{V}=30.942$ cm/secとなる。つぎに、これらの 流速の値を用いて、この時の水圧(初期駆動水頭、 ΔH_0 、 mmH₂O)をそれぞれの部位について、式(1)を利用し て

 $V = \sqrt{2 g} \cdot \sqrt{\Delta H_0}$

 $\therefore \Delta H_0 = V^2 / 2 g \qquad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (11)$

から求めると、口では△H₀=18.162²/2g=1.7mmH₂O. 鰓裂では△H₀=35.876²/2g=6.6mmH₂O, 二次鰓弁では ら,ブリでの口腔弁あるいは鰓蓋弁が開くのに必要な水圧 は口あるいは鰓裂の部位の初期駆動水頭を示す圧力に相当 する圧力つまりそれぞれ-1.7mmH2O, 6.6mmH2Oである と推測される。二次鰓弁間の部位では、水が流れるのに必 要な最小の水圧は同様に初期駆動水頭を示す圧力に相当す る圧力つまり4.9mmH2Oであると推測される。テラピアで のそれらの水圧は、口腔弁では-0.8mmH2O、鰓蓋弁では 3.1mmH₂O, 二次鰓弁間では0.8mmH₂Oと計算されている¹⁴⁾。 二次鰓弁間を水が流れるのに必要な水圧は、Bluefish Pomatomus saltatrix およびカツオではそれぞれ0.5mmH2O²³⁾ および0.8mmH2O24) と推測されている。これらのことか ら,ブリはテラピアよりも口腔弁および鰓裂弁が開くのに 大きな水圧を必要とし、二次鰓弁間を水が流れるのに必要 な最小水圧も大きい。しかし、二次鰓弁間を水が流れるの に必要な最小水圧はBluefishやカツオと同程度であると考 えられる。

つぎに、口、鰓裂および二次鰓弁間の部位での呼吸運動 に伴う流速の変化を次のようにして推測した。流速(V, cm/sec)は、毎秒40回の読み取り速度で連続記録した水 圧(△H, mmH2O)を用いて式(1)から計算した。各部 位の流速は、前記の初期駆動水頭の概念を考慮し、Fig. 5 に示した水圧変化の場合について計算するとFig.13に示す 変化となった。口での流速は、初期駆動水頭を示す水圧で 口腔弁が開くと直ちに酸素飽和の状態では18.162cm/sec を,低酸素の場合には18.162cm/secを示し、その後増大 してそれぞれ約50cm/sec,約100cm/secに増大した後減少 した。鰓裂での流速は、酸素飽和の状態では初期駆動水頭 を示す水圧で鰓蓋弁が開くと直ちに35.876cm/secを示し、 その後口の場合とほぼ同じ流速(約50cm/sec)まで増大 した後減少した。しかし、低酸素の場合には、水の流れて いる時間が酸素飽和の状態よりも約1/3に短くなった。

二次鰓弁間での流速は、酸素飽和の状態では初期駆動水頭 を示す水圧で水が流れ始め直ちに30.942cm/secを示し、 その後約40cm/secに増大した後初期駆動水頭を示す水圧 まで減少すると一度水流が停止し,再び初期駆動水頭を示 す水圧で水が流れ始め直ちに30.942cm/secを示し、その 後約50cm/secに増大した後初期駆動水頭を示す水圧まで 減少すると水流が停止した。このように、酸素飽和の状態 では呼吸運動1周期の間に水が2回流れる型を示してい た。しかし、低酸素の場合には、初期駆動水頭を示す水圧 で水が流れ始めて直ちに30.942cm/secを示し、その後約 90cm/secに増大した後減少した。このように、低酸素の 場合には呼吸運動1周期の間に水が1回流れる型に変化し た。一方、コイやブラックバスで直接測定されている流速 の連続記録^{5.6)}では、本研究と異なって、口腔弁および鰓 蓋弁が開くと直ちに水が所定の流速で流れ始めるような変 化は示されていない。しかし、これらの連続記録では、流 速計の感応部分を口から口腔内あるいは鰓裂から鰓腔内に 挿入して測定を行っていることから、口腔弁および鰓蓋弁 は正常に作動していないと考えられる。

Hughes^{2,3)}は、口腔ポンプと鰓腔ポンプの動きから呼吸 運動1周期を4つの相に分けて説明している。つまり,第 1相は、主として吸引ポンプの作用で、口腔内の水圧が体 の外に対してマイナスを示し、口腔弁が開いて口腔内へ水 を吸入し、鰓腔内では口腔内よりもマイナスの程度が大き い。第2相は、口腔内の水圧が体の外に対してプラスを示 し、口腔弁が閉じており、鰓腔内では体の外に対してマイ ナスを示している。ここで、鰓蓋弁は第1相と第2相の時 には閉じている。第3相は, 圧ポンプの作用で, 口腔内の 水圧のプラスの程度が第2相よりも大きくなり、口腔弁が 閉じており, 鰓腔内は水圧が口腔内よりも小さいがプラス を示し、鰓蓋弁が開いて水を体の外に呼出している。第1 相から第3相の間には、口腔内の水圧が鰓腔内よりも高い ために水が口腔から二次鰓弁間を通過して鰓腔へ流れてい る。第4相は、口腔および鰓腔内の水圧がそそれぞれ体の 外に対してマイナスあるいはプラスを示し、口腔弁および 鰓蓋弁がともに開いている。この時、口腔内の水圧が鰓腔 内よりも低くなっているが、二次鰓弁間の水の流れは停止 していると仮定している。これをもとに検討すると、ブリ での呼吸運動1周期は、Fig.13に示したように、酸素飽和 の状態では第1相と第3相から成っており、第2相と第4 相が出現しない。また、二次鰓弁間の水の流れは第1相(吸 引ポンプの作用)と第3相(圧ポンプの作用)を示す間に 2回起こっている。低酸素になって換水量が増加すると,

Fig.13. Changes of water velocities (V) in the mouth (thin lines), the gill slit (broken lines) and the secondary lamella (heavy lines) with respiratory movement of the yellowtail under normoxic (above) and hypoxic (below) conditions. Water pressures (P) are the same as those in Fig. 5. Each Roman numerals followed the stage of the respiratory cycle proposed Hughes. The letters (a and b) show the water flows between the secondary lamella during one cycle of respiratory movement.

第1相と第3相に加えて第2相が極めて短い時間出現した。二次鰓弁間の水の流れは,酸素飽和の状態で認められた第1相での水の流れている期間が移動して第3相と重なって,第2相,第3相から第1相の初期まで連続して呼吸1周期で1回起こるように変化した。しかし,Hughes^{2.3)} が仮定したような口腔内と鰓腔内の水圧差が反転する第4 相の出現は,酸素飽和および低酸素の状態のいずれにも認 められなかった。このように、ブリの換水運動は、Hughes^{2,3)}の提唱している呼吸運動1周期での口腔ポンプと鰓腔ポンプの働きが多少異なっていた。

一方, ブラウントラウトでは口腔と鰓腔内の水圧差が逆 転してマイナスとなる相が生ずるが, マアジTrachurus trachurus, ツノガレイPleuronectes platessa, ババガレイ Microstomus kittでは生じないと報告されている^{2,3)}。ブリ では、水圧差がマイナスとなる相は認められなかった。こ れらのことから、プリは明らかにブラウントラウトとは異 なり、後者の呼吸様式を示す魚類に相当すると考えられ る。しかし、魚類に関する呼吸運動1周期での口腔ポンプ と鰓蓋腔ポンプの動きについては、今後研究対象魚種をさ らに増やして、検討する必要があると考える。

メカジキ科,マカジキ科およびサバ科の魚類では,巡航 速度で遊泳する時には,前記のような口腔ポンプと鰓蓋腔 ポンプの働きを停止して前進運動による鰓換水 (Ram gill ventilation)を行い、ブリも含まれているアジ科の多くの 魚種でも同様な鰓換水が認められると報告されている25)。 このような鰓換水を行うには、30cm/sec以上の遊泳速度 が必要であると推測されている250。実際に、種々の魚種で の値を平均すると65cm/sec (35~82cm/sec) となると報 告されている²⁵⁾。一方,多くの魚種の成魚での巡航遊泳速 度は毎秒体長の1から4倍(1~4BL/sec)であると推 測している25)。高松ら26)は、水族館の潮流式大型回遊水槽 での観察から、回遊しているブリ(体長45~95cm)の遊 泳速度は80~94cm/secであったと報告しており、この速 度は0.8~2 BL/secに相当する。静止した状態で行った本 研究の結果では、口の部位での平均流速は39.7~ 71.5cm/secを示し、この速度を実験に用いた個体の体長 (36.7cm)で換算すると1.1~1.9BL/secとなる。この速 度は前記の水族館での速度と良く一致している。また,多 くの魚種での前進運動で鰓換水を行う時の遊泳速度とも良 く一致する。一方, ブリが本研究で試算した口での平均流 速(39.7~71.5cm/sec)以上の速度で遊泳する場合には、 口を開けるだけで口から水がその流速で流入することにな る。これらのことから、ブリでも、口での平均流速以上の 速度で遊泳する場合には、口腔ポンプと鰓蓋腔ポンプの働 きを停止して前進運動による鰓換水を行っていると考えら れる。

呼吸1周期中の口,鰓裂および二次鰓弁間の部位での瞬 時の換水量はその時の流路面積と流速を乗じた値で求ま る。そこで,呼吸1周期中に変化している流路面積と流速 の関係は平均流路面積と平均流速の関係式で表される関係 を示して変化していると仮定した。この仮定の下に次のよ うにして毎分換水量を計算し,実測値と比較した。なお, 鰓裂の部位については,平均流路面積と平均流速の関係式 (式9)の回帰率が低い (R²=0.077) ことから除外した。 計算は,毎秒40回の読み取り速度で連続記録した水圧 (△H,mmH₂O)を用いて式(1)から計算した呼吸1周 期中の口,鰓裂および二次鰓弁間の流速(V, cm/sec)を 式(8) あるいは式(10) に代入し,それぞれの部位の流 路面積(S, cm²)を求めた。次に,これらの値を用いて呼 吸一回の換水量(Vsv, *ml*/min/fish)を

Vsv, $c = \int_0^{\Delta^T} Q dt = \int_0^{\Delta^T} SV dt \cdot \cdot \cdot \cdot \cdot \cdot (12)$ から求め、毎分換水量 (Vg, c, $l/\min/kg$) をVsvの値、呼 吸数 (Rf, stroke/min) および (BW, kg) を用いて

Vg, c=Vsv, c・Rf/BW ・・・・・・・ (13) から計算した。このようにして計算した計算値 (Vg, c) と実測値 (Vg) の関係は, 口では,

Vg,c=0.824Vg-0.087 (R²=0.966), 二次鰓弁間では,

 $Vg, c=1.001Vg-0.082 (R^2=0.964),$

を示した(Fig.14)。Vg, cとVgの関係式の回帰率はおぼ1 を示し,その傾きは口では0.82,二次鰓弁間では1を示し た。これらのことから,計算値と実測値が良く一致するこ とが明らかである。以上のことから,口および二次鰓弁間 の部位では,呼吸一周期中の流路面積および流速は,それ ぞれの部位での水圧の変化に伴って,平均流速と平均流路 面積の関係式(式8,10)で表される線上を往復移動して

Fig.14. Relationship between the actual measurement value (Vg) and the estimated value (Vg,c) of minute volume of gill ventilation in the yellowtail. Vg,c were calculated by the formulas for the mouth and the secondary lamella in Fig.12.

変化しており,その時の瞬時の換水量の変化はその関係式 から計算される流路面積と流速を乗じて求めることが可能 であると推測した。しかし,鰓裂の部位による違いについ ては,今後さらに検討する必要があると考えている。

要 約

本研究は,酸素飽和度を低下させて換水量を変化させ, 換水量,口腔と鰓腔の水圧およびそれらの水圧差を連続記 録し,口,鰓裂および二次鰓弁間での流速や流路面積を計 算して,ブリの鰓換水について調べた。

毎分換水量は低酸素になると酸素飽和よりも5倍増加した。この時,平均流速は,口では39.7から71.5cm/secへ1.8 倍,二次鰓弁では33.6から50.3cm/secへ1.5倍増加したが, 鰓裂では35.5から38.4cm/secへわずかな増大に留まっていた。平均流路面積は,口では0.69から1.59cm²へ2.3倍, 二次鰓弁では0.38から1.33cm²へ3.5倍,鰓裂では0.69から4.19cm²へ6.1倍増大した。平均流路面積と平均流速の 関係式から,口腔弁と鰓蓋弁が開くのに必要な水圧はそれ ぞれ-1.7mmH₂O以上,6.6mmH₂O以上,二次鰓弁間を水 が流れるには4.9mmH₂O以上の水圧が必要であると推測した。

引用文献

- Hughes G M, Shelton G : Pressure changes during the respiratory movements of teleostean fishes. *Nature*, 179, 255 (1957)
- Hughes G M, Shelton G : The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol, 35, 807-823 (1958)
- 3) Hughes G M : A comparative study of gill ventilation in marine teleosts. J Exp Biol, 37, 28-45 (1960)
- 4) Shelton G : The regulation of breathing. In : Hoar W S, Randall D J (ed) Fish Physiology IV. Academic Press, New York and London, 239-359 (1970)
- 5) Holeton G F, Jones D R: Water flow dynamics in the respiratory tract of the carp (Cyprinus carpio L.). J Exp Biol, 63, 537-549 (1975)
- 6) Lauder G V : Pressure and water flow patterns in the respiratory tract of the bass (*Micropterus salmoides*). J Exp Biol, 113, 151-164 (1984)
- 7) Saunders R L : The irrigation of the gills in fishes. II.

Efficiency of oxygen uptake in relation to respiratory flow activity and concentrations of oxygen and carbon dioxide. *Can J Zool*, **40**, 817-862(1962)

- Hughes G M : The dimensions of gills in relation to their function. J Exp Biol, 45, 177-195 (1966)
- 9) Paling, J. E.: A method of estimating the relative volumes of water flowing over the different gills of a freshwater fish. J Exp Biol, 48, 533-544 (1968)
- Scheid P S, Piiper J: Theoretical analysis of respiratory gas equilibration in water passing through fish gills. *Resp Physiol*, 13, 305-318(1971)
- Stevens E D, Lightfoot E N : Hydrodynamics of waterflow in front of and through the gills of skipjack tuna. *Comp Biochem Physiol*, 83A, 255-259 (1986)
- 12) Malte H : Pressure/flow relations in the interlamellar space of fish gills: theory and application in the rainbow trout. *Resp Physiol*, 78, 229-242 (1989)
- 13) Hughes G M : General anatomy of the gills. In Hoar W S, Randall D J (ed) Fish Physiology X, Part A. Academic Press, New York and London, 1-72 (1984)
- 14) 山元憲一,半田岳志,横田源弘,高橋孝史:テラピアの 鰓換水.水大校研報,56(2),187-199 (2007)
- 15) Holeton G F, Randall D J: Changes in blood pressure in the rainbow trout during hypoxia. J Exp Biol, 46, 297-305 (1967)
- 16) 板沢靖男, Hughes G M: コイ科魚類テンチの鰓換水量に関する予備的実験.魚雑,21,39-42 (1974)
- 17) 竹田達右、山元憲一:魚の呼吸循環系へのカニュレーション.日本水産学会(編)、水産学シリーズ 24、魚の呼吸と循環.恒星社厚生閣、東京、125-128 (1978)
- Prandtl L:流体の運動論.非粘性流体の力学,流れ 学(上)(白倉昌明・橘藤雄監訳),コロナ社,東京, 36-109 (1974)
- 19) 浅沼強:非定常流.八田桂三,浅沼強,松木正勝(編),
 内燃機関計測ハンドブック.朝倉書店,東京,53-63 (1979)
- Hughes G M : General anatomy of the gills. In Hoar W
 S, Randall D J (ed) Fish Physiology X, Part A.
 Academic Press, New York and London, 1-72 (1984)
- 21)小林博,杉山昭博:ブリの鰓構造,とくに二次鰓弁に関する計測学的知見.水大校研報,28,89-99 (1980)
- 22) Randall DJ, Daxdoeck C : Oxygen and carbon dioxide transfer across fish gills. In Hoar W S, Randall D J

(ed) Fish Physiology X, Part A. Academic Press, New York and London, 263-314 (1984)

- 23) Roberts J L : Active branchial and ram ventilation in fishes. *Biol Bul, Woods Hole*, **148**, 85-105 (1975)
- 24) Brown C E, Muir B S: Analysis of ram ventilation of fish gills with application to skipjack tuna (Katsuwonus pelamis). J Fish Res Bd Can, 27, 1637-1652 (1970)
- 25) Roberts J L : Ram gill ventilation in fish. In G. D. Sharp G D, Dizon A E (ed) The physiological ecology of tunas. Press, New York, San Francisco and London, 83-88 (1978)
- 26) 高松史朗,中島東夫,西源二郎:回遊水槽における魚の行動. I. 遊泳路の締切によって形成された魚の 群れについて,生理生態,14,43-63 (1967)