

ヌタウナギ好中球の形態学的および細胞化学的特徴

メタデータ	言語: Japanese
	出版者:水産大学校
	公開日: 2024-10-11
	キーワード (Ja):
	キーワード (En): neutrophil; granulocyte; hagfish;
	Eptatretus burgeri; morphology
	作成者: 近藤, 昌和, 高橋, 幸則
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2011916
	This work is licensed under a Creative Common

This work is licensed under a Creative Commons Attribution 4.0 International License.

ヌタウナギ好中球の形態学的および細胞化学的特徴

近藤昌和†,高橋幸則

Morphological and Cytochemical Characteristics of Neutrophil from Hagfish, *Eptatretus burgeri*

Masakazu Kondo[†] and Yukinori Takahashi

Abstract : Morphological and cytochemical characteristics of neutrophil in hagfish, *Eptatretus burgeri* were examined by light microscopy and the composition of neutrophil granule were inferred in this study. The neutrophils were round or oval (15-20 μ m in diameter) and the nucleus round to two lobule-shaped. Only one types of granule; basophilic granule (γ G) was observed in the neutrophil. The γ G was round or oval ($\leq 0.5 \mu$ m in diameter) and stained with not only MG using distilled water and 5 mM phosphate buffer, but also Giemsa and MGG. Alpha-naphthyl butyrate esterase was detected in the γ G. Yasumoto body (Y-body) was also observed in neutrophil and stained with toluidine blue.

Key words : neutrophil, granulocyte, hagfish, Eptatretus burgeri, morphology

緒 言

魚類は無顎上網と顎口上網に大別され,顎口上網には軟 骨魚網,肉鰭網および条鰭網(腕鰭亜網,軟質亜網,新鰭 亜網)が含まれる¹⁾。著者らはこれまでに,真骨魚類(条 鰭綱新鰭亜綱ハレコストム区真骨亜区¹⁾)は好中球内顆粒 の種類数の違いから,少なくとも以下の3群に大別される ことを明らかにした。

I 群:好酸性顆粒 (α 顆粒), 難染性顆粒 (β 顆粒) お よび好塩基性顆粒 (γ 顆粒)の3 種類の顆粒が好中球に認 められる魚種。

Ⅱ群:α顆粒とβ顆粒が認められる魚種。

Ⅲ群:β顆粒のみが認められる魚種。

I 群には、真骨魚類の中で祖先種が最も早期に出現した アジアアロワナScleropages formosus(アロワナ下区アロワナ 目)や²⁾、Ⅲ群の中で最も早期に出現したノーザンパイク Exos lucius(正真骨下区原棘鰭上目カワカマス目)よりも 原始的な魚類であるコイCyprinus carpio(ニシン・骨鰾下 区骨鰾上目コイ目)が含まれていることから^{3.4)}、I 群の 形質は真骨魚類好中球の原型であると推察される。スズキ 目 (正真骨下区棘鰭上目) のナイルティラピア Oreochromis niloticusとイサキParapristipoma trilineatumも I 群に含まれ るが^{5.6)}, Ⅲ群にもメジナGirella punctata, オオクチバス Micropterus salmoides, ブルーギルLepomis macrochirus, ス ズキLateolabrax japonicus, ヒラスズキL. latus, タイリクス ズキL. spといったスズキ目魚類が含まれることから⁷⁻⁹⁾, Ⅰ群とⅢ群の関連は不明である。また、Ⅲ群には、ノーザ ンパイク(正真骨下区原棘鰭上目カワカマス目)や10,ス ズキ目から派生したとされるヒラメ Paralichthys olivaceus (正真骨下区棘鰭上目カレイ目)11)が含まれることから12, 現生真骨魚類のうち、新顎類1)に広範囲に渡って受け継 がれている形質と考えられる。一方、Ⅱ群のトラフグ Takifugu rubripes は¹³⁾正真骨下区棘鰭上目フグ目に属し, ヒラメと同様にスズキ目から派生したと考えられているが11), これまでに、トラフグと同様の好中球は他魚種には認めら れておらず、本群と他の群との関係は明らかではない。ま た、各群内および各群間における好中球機能の類似性や相 違も不明である。

2008年12月3日受付. Received December 3, 2008.

水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

[†] 別刷り請求先 (Corresponding author): Kondom@fish-u.ac.jp

前報において,著者らは真骨魚類とともに条鰭綱に含ま れる腕鰭亜綱ポリプテルス目¹⁾ に属するポリプテルス エンドリケリー*Polypterus endlicheri*について,好中球の形 態学的特性を明らかにした¹⁴⁾。その結果,*P. endlicheri*の好 中球には,2種類のα顆粒(α -1顆粒と α -2顆粒)とア 顆粒が観察された。しかし, β 顆粒は観察されなかった¹⁴⁾。 したがって, α顆粒とア顆粒の起源は真骨亜綱と腕鰭亜綱 の共通の祖先まで遡るが, β 顆粒は真骨魚類の出現時に得 られた形質であると考えられた¹⁴⁾。

無顎上綱にはヌタウナギ綱(旧メクラウナギ綱)と頭甲 綱(ヤツメウナギ類)が含まれ,現存する脊椎動物の中で, 最も原始的な動物群と考えられてきた。現在,無顎類は初 期の脊椎動物の多くの系統群をまとめたものであり,顎口 類と対峙する単系統群ではないと考えられることから,無 顎類を含む初期の脊椎動物の分類体系は確立されたものと はいえなくなっている¹¹。しかし,ヌタウナギ類は,脊椎 動物の最初の系統とされている¹¹。これまでにも,ヌタウ ナギ類の血液中に,好中球様の顆粒性白血球が存在するこ とが報告されている¹⁵。しかし,著者らのこれまでの報告 ^{2-10,12-14}のように,種々の条件下でRomanowsky型染色を行 い,形態学的特徴を明らかにすることは行われていない。

本研究では、魚類における好中球顆粒の多様性ならびに 条鰭類の好中球に観察される各種顆粒の起源を明らかにす るために、ヌタウナギ綱ヌタウナギ目ヌタウナギ科のヌタ ウナギ*Eptatretus burgeri*について、好中球のRomanowsky型 染色性を調べるとともに、細胞化学的特性を明らかにした。

材料および方法

実験動物

下関市蓋井島の沖合で採取されたヌタウナギ(全長約40 cm)を水産大学校の飼育施設に搬入し,1週間馴致飼育 したのち実験に供した(水温約15℃)。なお,馴致期間中 は無給餌とした。

Romanowsky型染色法および細胞化学染色法

MS222で麻酔したヌタウナギの尾部副心臓から血液を採 取した。ヌタウナギ血液は体外で凝固しないが,著者らの これまで報告と比較するために,採血には、ヘパリンを少量 入れた注射器を用いた。引きガラス法によって血液塗沫標 本を作製し,各種染色を施した。なお、各種条件における Romanowsky型染色法および各種細胞化学染色法は前報¹⁴⁾ に従った。

貪食試験

Vibrio anguillarum (NCMB-6株) をブレインハートイ ンフュージョン寒天培地上で25℃,24時間培養後,3 %NaCl水溶液に1.0×10¹⁰ cfu/mlとなるよう懸濁した。採 取したヌタウナギ血液と菌液を等量混合し,18℃で1時間 培養後,塗沫標本を作製し,メイ-グリュンワルド(MG)・ ギムザ染色を施して顕微鏡観察した。なお,血液中の各種 血球の存在比は,赤血球:他の血球が約10:1であり,赤 血球以外の血球に占める好中球の割合は約15%であった。

結 果

ヌタウナギの血液中に活発な貪食能を有する顆粒性白血 球(好中球)が観察された(Fig.1)。この血球は,長径15 ~20 μ mの円形または卵円形であり,細胞質には好塩基性 顆粒(7顆粒)が観察された。しかし,好酸性顆粒(α 顆 粒)と難染性顆粒(β 顆粒)は認められなかった。また, 好塩基性を呈し,不定型の安本小体(Y小体)も稀に観察 された。種々の形態の核が偏在しており,分葉核(2分葉 まで)も認められた。

ア 顆粒は、円形または卵円形で長径0.5µm以下であった。本顆粒は、MG原液(メタノール溶液)では染色されなかった(Fig. 2)。希釈液に蒸留水および5mMリン酸緩 衝液(pH5.0~8.0)を用いたMG染色では、多数の淡青色 顆粒として観察された(Fig. 3-1~3-3)。しかし、¹/15 M

Fig. 1. Phagocytosis of Vibrio anguillarum by hagfish, Eptatretus burgeri neutrophil. May-Grünwald · Giemsa stain using phosphate buffer (¹/₁₅ M, pH 7.0). Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer at a rate of 1 : 100. Giemsa stain was for 60 min. Note phagocytized bacteria and cytoplasmic basophilic granules (γG). Arrowheads show γG. Bar=10 μm.

リン酸緩衝液を用いたMG染色では、いずれのpHにおいて も本顆粒は認められなかった(Fig. 3-4~3-6)。本顆 粒のギムザ染色性およびMG・ギムザ(MGG)染色性を調 べたところ、いずれの希釈液を用いても多数の淡青色顆粒 として観察された(Fig. 4,5)。また、希釈液にpH5.0の 5 mMリン酸緩衝液を用いて、MGG染色を施した標本では、 ギムザ染色液の希釈率を1:20,染色を60分間行った場合、 細胞質基質が赤紫色を呈したが、 γ 顆粒は、他の条件の場

Fig. 2. A hagfish, *Eptatretus burgeri* neutrophil stained with May-Grünwald concentrated-solution, which served as agents for both fixation and staining. After the staining for 5 min, the sample was washed with distilled water. Bar= $10 \,\mu$ m.

合と同様に淡青色であった(Fig.5-5)。

Y小体は,いずれの染色条件においても少数の好中球に 観察された(Fig.4,5)。本小体は円形,卵円形,コンマ 形,ドーナツ形など,形態および大きさは多様であった。

ヌタウナギ好中球の細胞化学的特性をTable 1 に示した。 各種酵素染色を行ったところ、 α -ナフチルプチレートエ ステラーゼ (α NBE) 活性が検出され、陽性顆粒は直径0.5 μ m以下の円形または卵円形であり、細胞質に多数観察さ れた (Fig. 6-1)。しかし、アルカリ性フォスファターゼ (AIP)、酸性フォスファターゼ (AcP)、 β -グルクロニダー ゼ (β -Glc)、 α -ナフチルアセテートエステラーゼ (α NAE)、ナフトールAS-Dクロロアセテートエステラーゼ

(NASDCAE) およびペルオキシダーゼ活性は認められな かった。オイルレッドO,ズダンⅢおよびズダンブラック B (SBB) 染色でも陽性顆粒は観察されなかった。 α -アミ ラーゼ処理によって完全に消失するPeriodic acid Schiff反 応 (PAS) 陽性顆粒 (円形,直径約0.3µm) が細胞質に 多数散在していた (Fig. 6-2)。細胞質基質もPASで弱陽 性であったが,これも α -アミラーゼ処理によって消失し た。アルシアンブルー染色では,陽性部位は観察されな かった。蒸留水に溶解したトルイジンブルー (TB) によ る染色では,種々の形態を示す青色の構造物が稀に観察さ れた (Fig. 6-3)。

Fig. 3. Hagfish, *Eptatretus burgeri* neutrophil stained with May-Grünwald solution under various conditions. After fixation and staining for 5 min with May-Grunwald concentrated-solution, the sample was stained again for 10 min in May-Grunwald diluted with the following solutions: (1) distilled water, (2) phosphate buffer (5 mM, pH5.0), (3) phosphate buffer (5 mM, pH8.0), (4) phosphate buffer (¹/₁₅M, pH5.0), (5) phosphate buffer (¹/₁₅M, pH7.0), (6) phosphate buffer (¹/₁₅M, pH8.0). Bars=10 μm.

Fig. 4. Hagfish, *Eptatretus burgeri* neutrophil under various staining conditions. Giemsa stain. After fixation for 5 min with methanol, the sample was stained with Giemsa solution diluted as follows: (1) Giemsa solution was diluted in distilled water at a rate of 1: 20. Giemsa stain was for 15 min. (2) Giemsa solution was diluted in distilled water at a rate of 1: 20. Giemsa stain was for 60 min. (3) Giemsa solution was diluted in distilled water at a rate of 1: 100. Giemsa stain was for 15 min. (4) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH5.0) at a rate of 1: 20. Giemsa stain was for 15 min. (5) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH5.0) at a rate of 1: 20. Giemsa stain was for 60 min. (6) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH5.0) at a rate of 1: 20. Giemsa stain was for 15 min. (7) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH8.0) at a rate of 1: 20. Giemsa stain was for 15 min. (8) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH8.0) at a rate of 1: 20. Giemsa stain was for 15 min. (8) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH8.0) at a rate of 1: 20. Giemsa stain was for 15 min. (9) Giemsa solution was diluted in 0.5 mM phosphate buffer (pH8.0) at a rate of 1: 20. Giemsa stain was for 15 min. (10) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH5.0) at a rate of 1: 20. Giemsa stain was for 15 min. (11) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH7.0) at a rate of 1: 20. Giemsa stain was for 15 min. (12) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH7.0) at a rate of 1: 20. Giemsa stain was for 15 min. (13) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH7.0) at a rate of 1: 20. Giemsa stain was for 15 min. (14) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH7.0) at a rate of 1: 20. Giemsa stain was for 60 min. (15) Giemsa solution was diluted in ¹/₁₅₀M phosphate buffer (pH7.0) at a rate of 1: 20. Giemsa stain was for 15 min. (

Fig. 5. Hagfish, *Eptatretus burgeri* neutrophil under various staining conditions. May-Grünwald · Giemsa stain. (1) distilled water. Giemsa solution was diluted in distilled water at a rate of 1 : 20. Giemsa stain was for 15 min. (2) distilled water. Giemsa solution was diluted in distilled water at a rate of 1 : 20. Giemsa stain was for 60 min. (3) distilled water. Giemsa solution was diluted in distilled water at a rate of 1 : 100. Giemsa stain was for 15 min. (4) phosphate buffer (5 mM, pH5.0). Giemsa solution was diluted in 0.5 mM phosphate buffer at a rate of 1 : 20. Giemsa solution was diluted in 0.5 mM, phosphate buffer (5 mM, pH5.0). Giemsa solution was diluted in 0.5 mM phosphate buffer at a rate of 1 : 20. Giemsa stain was for 60 min. (6) phosphate buffer (5 mM, pH5.0). Giemsa solution was diluted in 0.5 mM phosphate buffer (5 mM, pH 8.0). Giemsa solution was diluted in 0.5 mM phosphate buffer (5 mM, pH 8.0). Giemsa solution was diluted in 0.5 mM phosphate buffer (5 mM, pH 8.0). Giemsa stain was for 1 : 20. Giemsa stain was for 60 min. (8) phosphate buffer (5 mM, pH 8.0). Giemsa solution was diluted in 0.5 mM phosphate buffer at a rate of 1 : 20. Giemsa stain was for 60 min. (9) phosphate buffer (5 mM, pH 8.0). Giemsa solution was diluted in 0.5 mM phosphate buffer at a rate of 1 : 20. Giemsa stain was for 15 min. (11) phosphate buffer (¹/₁₅ M, pH 5.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 5.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 5.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 5.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 7.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 7.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 7.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 7.0). Giemsa solution was diluted in ¹/₁₅₀ M phosphate buffer (¹/₁₅ M, pH 7

近藤, 高橋

Fig. 6. Cytochemistry of hagfish, *Eptatretus burgeri* neutrophil. (1) α -naphtyl butyrate esterase, (2) periodic acid Schiff reaction, (3) toluidine blue in distilled water. Arrowheads show Y-body. Bars=10 μ m.

Table 1. Summary of reactions of hagfish, *Eptatretus burgeri* neutrophil to cytochemical tests

Test	Positive site (shape, number and size)				
Periodic acid Schiff reaction (PAS)	Granule (round, many, $\phi = 0.3 \mu m$); Hyaloplasm				
PAS after digestion with α -amylase	_				
Alcian blue (pH1.0)	—				
Alcian blue (pH2.5)	—				
Toluidine blue in distilled water	Granule (amorphous, a few, equivalent to Y-body)				
Sudan black B	_				
SudanIII					
Oil red O	_				
Alkaline phosphatase	_				
Acid phosphatase	_				
β -Glucronidase	_				
α -Naphtyl acetate esterase	_				
α -Naphtyl butyrate esterase	Granule (round or oval, many, $\phi \leq 0.5 \mu m$, equivalent to γG)				
Naphthol AS-D chloroacetate esterase	_				
Peroxidase					
non datastian					

, non detection.

考 察

ヌタウナギの好中球には,好塩基性顆粒(γ顆粒)と好 塩基性のY小体が観察された。

γ 顆粒は, P. endlicheri, アジアアロワナ, コイ, ナイルティ ラピアおよびイサキの好中球にも観察されており, いずれ の魚種においても円形または卵円形である^{2-6.14)}。また, 本顆粒の長径はP. endlicheriで約0.5 μ m以下¹⁴⁾, アジアア ロワナで0.3 μ m以下²⁾, コイで0.4 μ m以下⁴⁾, ナイルティ ラピアとイサキでは0.3 μ m以下である^{5.6)}。ヌタウナギの γ 顆粒も, 円形または卵円形で長径0.5 μ m以下であり, 形状および大きさが前述の魚種と類似していた。しかし, 本顆粒のRomanowsky型染色性は魚種間に違いが認められ た(Table 2 - 1, 2 - 2)。ヌタウナギのア顆粒は,希釈液に 蒸留水および5 mMリン酸緩衝液を用いたMG染色によっ て,多数の淡青色顆粒として観察された。しかし,¹/15 M リン酸緩衝液を用いたMG染色では染色されなかった。ま た,本顆粒はいずれの希釈液を用いても,ギムザ染色およ びMGG染色によって淡青色を呈し,多数のア顆粒が観察 された。一方, *P. endlicheri*のア顆粒はMG染色では認めら れず,ギムザ染色では,少数の顆粒のみが染色される¹⁴。 また,MGG染色ではpH7.0およびpH8.0の¹/15 Mリン酸緩

	Number of γ granules observed in each staining preparation ^{,1}						
Stain ^{2,3}	Eb	Pe	Sf	Cc	On	Pt	
MG (both fixation and stain)	NO	NO	NO	NO	NT	NT	
MG : DW	many	NO	NO	NO	NO	NT	
: 5mM PB, pH5.0	many	NO	NO	NO	NO	NO	
: 5mM PB, pH6.0	many	NO	NO	NO	some	NO	
: 5mM PB, pH7.0	many	NO	NO	NO	many	NO	
: 5mM PB, pH8.0	many	NO	many	NO	NT	NT	
: ¹ / ₁₅ M PB, pH5.0	NO	NO	NO	NO	NO	NO	
: ¹ / ₁₅ M PB, pH6.0	NO	NO	NO	NO	some	NO	
: ¹ / ₁₅ M PB, pH7.0	NO	NO	NO	NO	many	NO	
: ¹ / ₁₅ M PB, pH8.0	NO	NO	some	NO	NT	NT	
G : DW, 1:20, 15 min	many	some	many	NT	many	NT	
: DW, 1:20, 60 min	many	some	many	many	many	NT	
: DW, 1:100 , 15 min	many	NO	some	NT	NT	NT	
: DW, 1:100 , 60 min	many	some	some	many	NT	NT	
: 0.5mM PB, pH5.0, 1:20, 15min	many	some	many	NT	some	NT	
: 0.5mM PB, pH5.0, 1:20, 60min	many	some	many	many	NT	NT	
: 0.5mM PB, pH5.0, 1:100, 15 min	many	NO	some	NT	NT	NT	
: 0.5mM PB, pH5.0, 1:100, 60 min	many	some	some	many	NT	NT	
: 0.5mM PB, pH6.0, 1:20, 15min	many	some	many	NT	many	NT	
: 0.5mM PB, pH6.0, 1:20, 60min	many	some	many	many	NT	NT	
: 0.5mM PB, pH6.0, 1:100 , 15 min	many	NO	some	NT	NT	NT	
: 0.5mM PB, pH6.0, 1:100 , 60 min	many	some	many	many	NT	NT	
: 0.5mM PB, pH7.0, 1:20, 15min	many	some	many	NT	many	NT	
: 0.5mM PB, pH7.0, 1:20, 60min	many	some	many	many	NT	NT	
: 0.5mM PB, pH7.0, 1:100, 15 min	many	NO	many	NT	NT	NT	
: 0.5mM PB, pH7.0, 1:100, 60 min	many	some	many	many	NT	NT	
: 0.5mM PB, pH8.0, 1:20, 15min	many	some	many	NT	NT	NT	
: 0.5mM PB, pH8.0, 1:20, 60min	many	some	many	NT	NT	NT	
: 0.5mM PB, pH8.0, 1:100, 15 min	many	NO	many	NT	NT	NT	
: 0.5mM PB, pH8.0, 1:100, 60 min	many	some	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 15 min	many	some	many	NT	NO	NT	
: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 60min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 15 min	many	NO	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 60 min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 15min	many	some	many	NT	NO	NT	
: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 60min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH6.0, 1:100 , 15 min	many	NO	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH6.0, 1:100 , 60 min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 15 min	many	some	many	NT	many	NT	
: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 60 min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 15 min	many	NO	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 60 min	many	some	many	many	NT	NT	
: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 15 min	many	some	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 60 min	many	some	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 15min	many	NO	many	NT	NT	NT	
: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 60min	many	some	many	NT	NT	NT	

 Table 2 - 1.
 Summary of Romanowsky-type staining characteristics of γ granule in hagfish and actinopterygians neutrophil

¹*Eb, Eptatretus burgeri* (hagfish, present report); *Pe, Polypterus endlicheri* (Kondo and Takahashi (2009)¹⁴); *Sf, Scleropages formosus* (asian arowana, Kondo and Takahashi (2009)²); *Cc, Cyprinus carpio* (common carp, Kondo *et al.* (2002)⁴); *On, Oreochromis niloticus* (Nile tilapia, Yasumoto *et al.* (2003)⁵); *Pt, Parapristipoma trilineatum* (striped grunt, Kondo *et al.* (2004)⁶); NO, not observed; NT, not tested.

²MG, May-Grünwald; G, Giemsa; MGG, May-Grünwald · Giemsa; DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

 $^3\textsc{Diluent}$ for Giemsa of MGG stain were DW, 0.5 mM PB or $^1\!/_{150}$ M PB.

	Number of γ granules observed in each staining preparation ¹					
Stain ^{2,3}	Eb	Pe	Sf	Сс	On	Pt
MGG: DW, 1:20, 15 min	many	NO	some	NO	many	NT
: DW, 1:20, 60 min	many	NO	many	many	many	NT
: DW, 1:100 , 15 min	many	NO	some	NO	some	NT
: DW, 1:100 , 60 min	many	NO	some	NO	some	NT
: 5mM PB, pH5.0, 1:20, 15min	many	NO	some	NO	NO	NO
: 5mM PB, pH5.0, 1:20, 60min	many	NO	many	many	NO	NT
: 5mM PB, pH5.0, 1:100, 15 min	many	NO	some	NO	NT	NT
: 5mM PB, pH5.0, 1:100, 60 min	many	NO	many	NO	NT	NT
: 5mM PB, pH6.0, 1:20, 15min	many	NO	some	NO	many	NO
: 5mM PB, pH6.0, 1:20, 60min	many	NO	many	many	many	NT
: 5mM PB, pH6.0, 1:100 , 15 min	many	NO	some	NO	NT	NT
: 5mM PB, pH6.0, 1:100 , 60 min	many	NO	many	some	NT	NT
: 5mM PB, pH7.0, 1:20, 15min	many	NO	many	some	many	many
: 5mM PB, pH7.0, 1:20, 60min	many	NO	many	many	many	NT
: 5mM PB, pH7.0, 1:100, 15 min	many	NO	many	some	NT	NT
: 5mM PB, pH7.0, 1:100, 60 min	many	NO	many	some	NT	NT
: 5mM PB, pH8.0, 1:20, 15min	many	NO	many	NT	NT	NT
: 5mM PB, pH8.0, 1:20, 60min	many	NO	many	NT	NT	NT
: 5mM PB, pH8.0, 1:100, 15 min	many	NO	many	NT	NT	NT
: 5mM PB, pH8.0, 1:100, 60 min	many	NO	many	NT	NT	NT
: ¹ / ₁₅ M PB, pH5.0, 1:20, 15min	many	NO	some	NO	NO	NO
: ¹ / ₁₅ M PB, pH5.0, 1:20, 60min	many	NO	some	many	NO	NT
: ¹ / ₁₅ M PB, pH5.0, 1:100, 15 min	many	NO	some	NO	NT	NT
: ¹ / ₁₅ M PB, pH5.0, 1:100, 60 min	many	NO	some	NO	NT	NT
: ¹ / ₁₅ M PB, pH6.0, 1:20, 15 min	many	NO	many	some	many	NO
: ¹ / ₁₅ M PB, pH6.0, 1:20, 60 min	many	NO	many	many	many	NT
: ¹ / ₁₅ M PB, pH6.0, 1:100, 15 min	many	NO	many	NO	NT	NT
: ¹ / ₁₅ M PB, pH6.0, 1:100, 60 min	many	NO	many	some	NT	NT
: ¹ / ₁₅ M PB, pH7.0, 1:20, 15min	many	many	many	many	many	many
: ¹ / ₁₅ M PB, pH7.0, 1:20, 60min	many	many	many	many	many	NT
: ¹ / ₁₅ M PB, pH7.0, 1:100, 15 min	many	NO	many	some	NT	NT
: ¹ / ₁₅ M PB, pH7.0, 1:100, 60 min	many	NO	many	many	NT	NT
: ¹ / ₁₅ M PB, pH8.0, 1:20, 15 min	many	many	many	NT	NT	NT
: ¹ / ₁₅ M PB, pH8.0, 1:20, 60 min)	many	many	many	NT	NT	NT
: ¹ / ₁₅ M PB, pH8.0, 1:100, 15min	many	NO	many	NT	NT	NT
¹ / ₁₅ M PB nH8.0 1:100 60min	many	NO	many	NT	NT	NT

Table 2 - 2. Summary of Romanowsky-type staining characteristics of γ granule in hagfish and actinopterygians neutrophil

¹Eb, Eptatretus burgeri (hagfish, present report); Pe, Polypterus endlicheri (Kondo and Takahashi (2009)¹⁴); Sf, Scleropages formosus (asian arowana, Kondo and Takahashi (2009)²); Cc, Cyprinus carpio (common carp, Kondo et al. (2002)⁴); On, Oreochromis niloticus (Nile tilapia, Yasumoto et al. (2003)⁵); Pt, Parapristipoma trilineatum (striped grunt, Kondo et al. (2004)⁶); NO, not observed; NT, not tested.

 2 MG, May-Grünwald; G, Giemsa; MGG, May-Grünwald · Giemsa; DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

³Diluent for Giemsa of MGG stain were DW, 0.5 mM PB or $^{1}/_{150}$ M PB.

衝液を希釈液として用いた場合に観察される⁴⁰。アジアア ロワナのア顆粒は、pH8.0のリン酸緩衝液を希釈液として 用いた場合のみにMG染色に染まり、5mMでは多数の、 ¹/15</sub>Mでは少数のア顆粒が観察される²⁾。また、MGG染色 では、いずれの濃度およびpHのリン酸緩衝液を用いても、 ギムザ染色時間を長くすることで、多数のア顆粒が観察される²⁾。さらに、ギムザ染色のみを施した標本にも本顆粒 は観察され、ギムザ染色液中のギムザ原液の濃度が高いほ ど多数の顆粒が染色される²⁾。コイのア顆粒はMG染色では 染まらず、アジアアロワナと同様に、MGG染色のギムザ染 色時間を長くするほど染色される顆粒の数が増加する⁴)。 また、リン酸緩衝液の濃度が低い(5 mM)場合にはpH7.0 で染色されるのに対して、高濃度(¹/15 M)ではpH6.0お よびpH7.0で染色される⁴)。さらに、アジアアロワナと同 様に、ギムザ染色のみを施した標本にも本顆粒は観察され る⁴)。ナイルティラピアでは、本顆粒は蒸留水を用いた MG染色には染まらない⁵)。しかし、リン酸緩衝液を用い たMG染色では、いずれの濃度の緩衝液においてもpH6.0 および7.0で染まり、MGG染色では蒸留水およびpH6.0と 7.0の緩衝液で染色される⁵)。また、ギムザ染色では蒸留 水を用いた場合,多数観察されるが,低濃度のリン酸緩衝 液ではpH5.0で少数の,pH6.0および7.0では多数のア顆粒 が観察され,高濃度ではpH5.0および6.0において本顆粒 は認められず,pH7.0において多数観察されている⁵⁾。イ サキのア顆粒はMG染色には染まらず,MGG染色では,い ずれの濃度の緩衝液を用いてもpH7.0では観察されるが, pH5.0およびpH6.0では染色されない⁶⁾。以上の染色性の 違いから,ヌタウナギ好中球のア顆粒の内容物や機能は, *P. endlicheri*,アジアアロワナ,コイ,ナイルティラピア ならびにイサキとは異なると思われる。

ヌタウナギ好中球には、好酸性顆粒(α顆粒)および難 染性顆粒(β顆粒)が観察されなかった。α顆粒はこれま でに*P. endlicheri*および真骨魚類のアジアアロワナ,コイ, ナイルティラピア,イサキ,トラフグで観察されている ^{2-6,13,14)}。また、これまでに著者らが報告した全ての真骨 魚種では、好中球にβ顆粒が認められており^{2-10,12,13)}、い ずれの魚種においてもβ顆粒は円形から卵円形である。

Y小体は、これまでに著者らが報告した真骨魚種のうち、コイ以外で認められている^{2.5-10.12,13)}。また、コイにおいても、病原細菌Aeromonas hydrophilaに人為感染させることで、本小体を有する好中球が血液中に出現することが明らかとなっている¹⁶⁾。さらに、P. endlicheriの好中球にもY小体が観察されている¹⁴⁾。

以上のことから, 魚類好中球の γ 顆粒および Y 小体の起 源は, 脊椎動物の共通の祖先にまで遡ると考えられる。ま た, α 顆粒は少なくとも真骨亜綱と腕鰭亜綱の共通の祖先 の出現時に, またβ 顆粒は真骨魚類の出現時に得られた形 質であると考えられる。

ヌタウナギ好中球には α NBE活性が検出された。本酵素 陽性顆粒は、直径約0.5 μ m以下の円形または卵円形であ り、細胞質に多数観察されたことから、 γ 顆粒に相当する と考えられる。また、好中球にはPAS陽性顆粒も多数観察 された。しかし、PAS陽性顆粒は直径約0.3 μ mの円形で あることから、 γ 顆粒とは形状および大きさが異なる。さ らに、PAS陽性顆粒は α -アミラーゼによって完全に消化 されることから、PAS陽性顆粒はグリコーゲンを主成分と する構造物であり、 γ 顆粒とは異なると考えられる。

これまでに、AIPはP. endlicheriとメジナに^{12,14)}、AcPは P. endlicheri、ノーザンパイク、スズキ、ヒラスズキ、メ ジナ、ヒラメおよびトラフグに^{9,10,12-14)}、 β -GlcはP. endlicheriとノーザンパイクに^{10,14)}、 α NAEはP. endlicheri、ア ジアアロワナ、ノーザンパイク、スズキ、ヒラスズキ、メ ジナ、ヒラメおよびトラフグに^{2,9,10,12-14)}、 α NBEはP. endlicheri, アジアアロワナ, ノーザンパイク, メジナおよび トラフグに^{2.10,12-14)}, NASDCAEはP. endlicheri, アジアア ロワナ,ノーザンパイク,スズキ,ヒラスズキおよびトラ フグに検出されている^{2.9,10,13,14)}。また,SBB陽性顆粒は、 P. endlicheri, アジアアロワナ, ノーザンパイク, ブルー ギル、スズキ、ヒラスズキ、メジナ、ヒラメおよびトラフ グの好中球に観察されている^{2.8-10.12-14)}。これらのうち, P. endlicheri 好中球では、 α - 1 顆粒にAIP, AcP, β -Glc, α NAE, α NBEおよび NASDCAEが存在し、SBB陽性で あると考えられている¹⁴⁾。また、ノーザンパイク好中球の AcP活性はβ顆粒に¹⁰,アジアアロワナのNASDCAE活性 は7顆粒に相当すると考えられている²⁾。しかし,多くの 魚種における各酵素およびSBB陽性顆粒と, Romanowsky 型染色によって認識される顆粒との関係は不明である場合 が多い。一方、ペルオキシダーゼはこれまでに、アジアア ロワナ, ノーザンパイク, ブルーギル, メジナ, スズキ, ヒラスズキ、ヒラメおよびトラフグにおいて観察されてお り、顆粒数、大きさおよび形状が類似していることから、 本酵素はβ顆粒に局在すると考えられる^{2,8-10,12,13)}。しか し, P. endlicheri好中球にはペルオキシダーゼ活性が認め られていない¹⁴⁾。P. endlicheri好中球に本酵素活性が認め られなかった理由として, P. endlicheri好中球には本来的 にβ顆粒が存在しないことがあげられている¹⁴⁾。ヌタウナ ギにおいてもペルオキシダーゼ活性が認められず、β顆粒 も観察されないことから, 魚類好中球のβ顆粒はペルオキ シダーゼ陽性顆粒であるといえる。ヒト好中球には3種類 の顆粒(アズール顆粒、特殊顆粒、ゼラチナーゼ顆粒)と 分泌小胞が存在し¹⁷⁾, AcPやβ-Glcといったリソソーム酵 素とともにPOがアズール顆粒に17.18)、AIPが分泌小胞に認 められている¹⁷。また、ヒト好中球ではNASDCAEが検出 されているが、 αNABと αNAEはほとんど認められない¹⁹。

P. endlicheri, アジアアロワナ, ノーザンパイク, ブルー ギル,メジナ,スズキ,ヒラスズキ,タイリクスズキ,ヒ ラメおよびトラフグにおいても,好中球にTB陽性部位が 観察されており,形態学的特徴から,Y小体に相当すると 考えられている^{2.8-10,12-14)}。また,コイにおいてもAeromonas hydrophila感染によって出現した好中球のY小体は, TBに陽性であることが報告されている¹⁶⁾。本研究結果か ら,ヌタウナギ好中球においてもTBによって染色され, 種々の形態を示す構造物が観察され,形態学的特徴から, Y小体に相当すると思われる。

本研究によって, ヌタウナギの好中球は細胞質に1種類 の顆粒(ア顆粒)とY小体を有し, ア顆粒にはαNBEが, Y小体にはトルイジンブルーで染色される物質が存在する ことが明らかとなった。

エステラーゼは,エステル結合を加水分解する酵素の総称であり²⁰⁾,リソソーム酵素の一種でもある²¹⁾。一般に, エステラーゼは非特異的エステラーゼと特異的エステラー ゼに区分され²⁰⁾, αNBEはαNBを基質として検出される非 特異的エステラーゼとされている²⁰⁾。したがって,ヌタウ ナギ好中球の γ 顆粒はリソソーム性顆粒であり,好中球に よって貪食された異物を処理する働きがあると考えられ る。

文 献

- 1) 矢部 衛:魚類の多様性と系統分類,松井正文編 脊 椎動物の多様性と系統. 裳華房,東京,46-93 (2006)
- 2)近藤昌和,高橋幸則:アジアアロワナの好中球顆粒. 水大校研報,57,219-226 (2009)
- 3)近藤昌和,安本信哉,高橋幸則:コイ好中球のメイー グリュンワルド・ギムザ染色性.水大研報,50,109-117 (2002)
- 4)近藤昌和,安本信哉,高橋幸則:コイ好中球のアズー ル顆粒.水大校研報,51,17-29 (2002)
- 5) 安本信哉,近藤昌和,高橋幸則:テラピア好中球顆粒のメイーグリュンワルド・ギムザ染色性.水大研報, 51,79-86 (2003)
- 6)近藤昌和,安本信哉,高橋幸則:イサキ好中球の顆粒.水大校研報,52,45-48 (2004)
- 7)藤昌和,金丸俊介,高橋幸則:メジナの好中球顆粒.水大校研報,52,67-71 (2004)
- 8)近藤昌和,柏村直宏,金丸俊介,稲川裕之,高橋幸則 :サンフィッシュ科魚類(オオクチバス,ブルーギル) の好中球顆粒.水大校研報,53,197-202 (2005)
- 9)近藤昌和,稲川裕之,高橋幸則:スズキ科魚類(スズ キ,ヒラスズキ,タイリクスズキ)の好中球の形態学 的および細胞化学的特徴.水大校研報,55,141-147 (2007)

- 近藤昌和,高橋幸則,山元憲一:ノーザンパイク好中 球の形態学的および細胞化学的特徴.水大校研報,56, 317-321 (2008)
- Gill A C and Mooi R D : Phylogeny and Systematics of Fishes. In: Hart P J B and Reynolds J D (eds) Handbook of Fish Biology and Fisheries Vol. 1. Blackwell Publishing, Oxford, 15-42 (2002)
- 12)近藤昌和,金丸俊介,柏村直宏,稲川裕之,高橋幸則
 :ヒラメおよびメジナ好中球顆粒の細胞化学的特徴.
 水大校研報,53,203-209 (2005)
- 13)近藤昌和,稲川裕之,池田 至,山元憲一,高橋幸則
 :トラフグ好中球の形態学的および細胞化学的特徴.
 水大校研報, 55, 133-139 (2007)
- 14)近藤昌和,高橋幸則:ポリプテルス好中球の形態学的 および細胞化学的特徴.水大校研報,57,283-297 (2009)
- 15) Rowley AF, Hunt TC, Page M and Mainwaring G: Fish. In: Rowley AF and Ratcliffe NA (eds) Vertebrate Blood Cells. Cambridge University Press, Cambridge, 19-127 (1988)
- 近藤昌和,高橋幸則:病原細菌Aeromonas hydrophila
 に感染したコイの好中球の安本小体.水大校研報, 56,323-327 (2008)
- 17)小宮山 淳:好中球特殊顆粒欠損症.好中球-機能低下と機能亢進-. 医薬ジャーナル社,大阪,145-166 (1998)
- 18) Fawcett, D.W.: Neutrophilic leukocytes. Bloom & Fawcett, a textbook of histology (12th ed.). Chapman & Hall, New York, 118-121 (1994)
- 宮内 潤,渡辺陽之輔:細胞化学および表面マーカー.
 Medical Technology臨時増刊 白血球を追う. Medical Technology, 19(7), 医歯薬出版,東京, 558-559 (1991)
- 20) 鈴木 裕: Esterase. 組織細胞化学の技術 酵素. 朝 倉書店, 東京, 108-126 (1986)
- 21) リソゾーム. 岩波 生物学辞典第4版. 岩波書店,東京,1466 (1996)