

アフリカハイギョProtopterus annectens好中球の形態学的および細胞化学的特徴

メタデータ	言語: Japanese
	出版者:水産大学校
	公開日: 2024-10-11
	キーワード (Ja):
	キーワード (En): African lungfish; Protopterus
	annectens; neutrophil; morphology; cytochemistry
	作成者: 近藤, 昌和, 高橋, 幸則
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2011938
	This work is licensed under a Creative Commons

Attribution 4.0 International License.

アフリカハイギョ*Protopterus annectens* 好中球の形態学的 および細胞化学的特徴

近藤昌和†, 高橋幸則

Morphological and Cytochemical Characteristics of Neutrophil from African Lungfish, *Protopterus annectens*

Masakazu Kondo[†] and Yukinori Takahashi

Abstract : Morphological and cytochemical characteristics of neutrophil from African lungfish, *Protopterus annectens*, were examined by light microscopy. The neutrophils were round to oval $(35-40 \,\mu \,\mathrm{m}$ in diameter) and the nucleus round to lobule-shaped. Only one type of granule, panchromatophilic granule (PG) was observed in the neutrophil. The PG was round to rod-shaped and stained panchromatophilic according to staining conditions. The PG was eosinophilic or methylenophilic (methylene blue positive) with May-Grünwald (MG). And further, the PG showed reddish purple with Giemsa stain. This color tone may be due to the metachromatic reaction by azure B in Giemsa (metaazurophilic). This granule was acid phosphatase, *a*-naphtyl acetate esterase, *a*-naphtyl butyrate esterase, naphthol AS-D chloroacetate esterase, PAS (*a*-amylase digestion resistance) and toluidine blue (metachromatic) positive.

Key words : African lungfish, Protopterus annectens, Neutrophil, Morphology, Cytochemistry

緒言

ハイギョ類(肺魚亜綱)はシーラカンス類(シーラカン ス亜綱)とともに肉鰭綱に分類されている¹⁾。同綱には四 肢動物(四肢動物亜綱)も含まれることから¹⁾,四肢動物 への進化を知るうえでハイギョは興味深い魚類である。ハ イギョ類の血球の分類は、ともに1属1種のオーストラリア ハイギョNeoceratodus forsteri(ケラトドス目ケラトドス 科ネオケラトドス属)²⁻⁴⁾とミナミアメリカハイギョ Lepidosiren paradoxa(レピドシレン目レピドシレン科レピ ドシレン属)⁵⁻⁹⁾ならびにアフリカハイギョ類(レピドシレ ン目プロトプテルス科プロトプテルス属)のProtopterus aethiopicus^{10,11)}, P. dolloi¹²⁾およびP. annectens^{13,14)}にお いて報告されている。しかし、分類基準や用語は混乱して いる。 著者らはこれまでに、多条件下Romanowsky型染色評価 法¹⁵⁾ を各種魚類の好中球に適用し、好中球顆粒の多様性 について明らかにしてきた¹⁵⁻³⁰⁾。その結果、魚類を含む脊 椎動物の原始的な系統とされているヌタウナギ類¹⁾に属 するヌタウナギEptatretus burgeriでは、好中球に好塩基 性顆粒(y顆粒)のみが観察され¹⁶⁾、真骨魚類(新鰭亜綱 ハレコストム区真骨亜区¹⁾)とともに条鰭綱に含まれ、条 鰭綱の中で最も祖先的と考えられている腕鰭亜綱ポリプテ ルス目^{1.31)}に属するPolypterus endlicheriの好中球には、 2種類の好酸性顆粒(a顆粒)とy顆粒が認められた¹⁷⁾。 また、真骨魚類は好中球の顆粒の種類数の違いから3群 (I ~ III群)に大別され、真骨魚類の中で、祖先種が最も 早期に出現したアジアアロワナScleropages formosus(7ロワナ下区アロワナ目¹⁾)では、a顆粒、難染性顆粒(β 顆粒)およびy顆粒の3種類の顆粒が観察され、I群に属

2009年9月17日受付. Received September 7, 2009.

水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan). [†]連絡先(Corresponding author): kondom@fish-u.ac.jp(M. Kondo). する¹⁸⁾。真骨魚類の I 群には、アロワナ下区に次いで出現 したカライワシ下区¹⁾のウナギAnguilla japonica (ウナギ 目)や¹⁵⁾,真骨魚類からアロワナ下区とカライワシ下区を 除いたクルペオセファラ類¹⁾のうち、最初に分岐したニ シン・骨鰾下区¹⁾ に属するコイ*Cyprinus carpio* (骨鰾上 目コイ目)が含まれることから^{19,20)}, I 群の好中球は、真 骨魚類好中球の原型であると考えられている¹⁷⁾。以上のこ とから、魚類好中球の γ 顆粒の起源は脊椎動物の共通の祖 先にまで遡り、 a 顆粒は少なくとも真骨亜網と腕鰭亜綱の 共通の祖先の出現時に、 β 顆粒は真骨魚類の出現時にそれ ぞれ得られた形質であると推察されている^{15,16)}。

真骨魚類のⅡ群にはトラフグ Takifugu rubribes (正真骨 下区棘鰭上目正棘鰭魚類スズキ形類フグ目1))とマダイ Pagrus major (スズキ形類スズキ目タイ科¹⁾) が含まれ、こ れら魚種の好中球には a 顆粒と β 顆粒が認められている^{21.29)}。 しかし. 両魚種間でα顆粒の染色性が異なることから、本 群は、Ⅱ-A群(トラフグ)とⅡ-B群(マダイ)に細分され ている²⁰⁾。Ⅲ群の好中球にはβ顆粒のみが認められ、ノー ザンパイクExos lucius (正真骨下区原棘鰭上目カワカマス 目¹⁾)や²²⁾.各種スズキ目魚類(オオクチバスMicropterus salmoides, ブルーギルLepomis macrochirus, スズキ Lateolabrax japonicus, ヒラスズキL. latus, タイリクスズ +L. sp., $\vee \forall t \in Girella \ punctata)$ とともに²³⁻²⁶⁾, スズキ 目から派生したとされる棘鰭上目カレイ目32)のヒラメ Paralichthys olivaceusが含まれることから²⁴⁾,現生真骨魚 類のうち、新顎類¹⁾に広範囲に渡って受け継がれている 形質と考えられている¹⁶⁾。しかし、スズキ目のナイルティ ラピアOreochromis niloticus (カワスズメ科), イサキ Parapristipoma trilineatum (イサキ科) およびブリ Seriola guingueradiata (アジ科)はI群に^{27,28,30)}, また, タイ科のマダイは上述の様にII-B群に属する²⁹⁾。したがっ て, スズキ目魚類は, 好中球内の顆粒の種類数から見て, 多様であると考えられている³⁰⁾。

本研究では、アフリカハイギョP. annectensの好中球の 形態学的および細胞化学的特性を明らかにし、既報^{2-14,33)} の各種ハイギョ類の好中球と比較するとともに、これまで に著者らが報告した各種魚類¹⁵⁻³⁰⁾の好中球との相違点に ついて明らかにした。

材料および方法

山口県宇部市内の熱帯魚店で購入した全長約30 cmのP.

annectensを水産大学校の飼育施設に搬入し、1年以上馴致 飼育したのちに実験に供した(水温23.0±1.0℃)。飼育期 間中は、市販の配合飼料(マリン6号、林兼産業)を適宜 給餌した。血液塗沫標本の作製、多条件下Romanowsky型 染色評価法および各種細胞化学染色法は文献15にしたがっ た。

結 果

P. annectensの好中球は、長径30~45 μmの円形または 卵円形であり、核は偏在し、楕円形、ドーナツ形、分葉核 など様々な形態が観察された。顆粒は長径0.4~0.5 μmの円 形、卵円形または桿形(長径1.0~1.5 μm,短径約0.5 μm) であり、染色条件の違いによって、淡橙色(エオシン好 性)、淡青色(塩基好性、正調メチレンブルー好性)または 赤紫色(異調アズール好性)を呈した(Table 1-1, 1-2, Figs. 1-1~1-3)。これらの染色性から、本顆粒を以後、汎 染色性顆粒(P顆粒, panchromatophilic granule (PG)) と称することとする。

P顆粒は、メイーグリュンワルド(MG)液による固定では、 染色されず、希釈液として蒸留水を用いたMG染色では、 多数の淡青色顆粒として観察された。一方. 低濃度(5 mM) のリン酸緩衝液で希釈したMG染色では、pH5.0の場合、 多数の淡橙色顆粒として認められたが (Fig. 1-1), pH6.0 では蒸留水を用いた場合と同様に、P顆粒は淡青色を呈し (Fig. 1-2), pH7.0では、少数の淡青色顆粒が観察され た。しかし、pH8.0では、P顆粒は染色されなかった(難 染性)。高濃度(¹/15M)のリン酸緩衝液を用いたMG染色 においても、pH5.0の場合には多数の、pH6.0では少数の淡 橙色顆粒が観察されたが、pH7.0およびpH8.0においては、 P顆粒は難染性であった。メタノール固定(5分間)後風 乾した標本に、ギムザ染色を施したところ、いずれの希釈 液を用いてもP顆粒は赤紫色または難染性を示した。MG 染色後にギムザ染色を施すMGG染色においても、P顆粒は ギムザ染色と同様の染色性を示したが、希釈液に蒸留水ま たは5 mMのリン酸緩衝液 (pH5.0~7.0) を用いた場合に は、多数のP顆粒が赤紫色を呈した(Fig. 1-3)。

P. annectensの好中球の細胞化学的特性をTable 2に示し た。酸性フォスファターゼ (AcP), a-ナフチルアセテート エステラーゼ (a-NAE), a-ナフチルブチレートエステラー ゼ (a-NBE) およびナフトールAS-Dクロロアセテートエ ステラーゼ (NASDCAE) 活性の存在を示す円形, 卵円 形または桿形の陽性顆粒が多数観察された(Figs. 1-4~ 1-7)。一方,アルカリ性フォスファターゼ(AIP), β -グ ルクロニダーゼ(β -Glu)およびペルオキシダーゼ活性は 検出されなかった。Periodic acid Schiff反応(PAS)に陽 性の顆粒が細胞質に多数観察されたが(Fig. 1-8),細胞 質基質には陽性反応は認められなかった。PAS陽性顆粒は 円形,卵円形または桿形であり,a-アミラーゼ処理に よって消失しなかった。アルシアンブルー染色では,陽性 部位は観察されなかった。トルイジンブルー(TB)染色 では,円形,卵円形または桿形の陽性顆粒が少数観察さ れ,その色調は淡赤紫色であった(Fig.1-9)。ズダンブ ラックB(SBB),ズダンⅢおよびオイルレッドO染色で は,陽性部位は観察されなかった。

Fig. 1. Neutrophil from African lungfish, Protopterus annectens. 1, May-Grünwald (MG) using 5 mM phosphate buffer (pH5.0); 2, MG using 5 mM phosphate buffer (pH6.0); 3, MG · Giemsa using distilled water; 4, acid phosphatase; 5, a-naphtyl acetate esterase; 6, a-naphtyl butytate esterase; 7, naphthol AS-D chloroacetate esterase; 8, periodic acid Schiff reaction; 9, toluidine blue in distilled water. Bars 10 μ m, insets 2.5 μ m.

近藤, 高橋

Staining condition ¹	Color and number of PG ²
MG (both fixation and stain)	NS (N)
MG:DW	B (N)
: 5 mM PB, pH5.0	O (Ň)
: 5 mM PB, pH6.0	B(N)
: 5 mM PB, pH7.0	B(S), NS(M)
5 mM PB, pH8.0	NS (N)
$1/_{15}$ M PB, pH5.0	O(N)
1/15 M PB, pH0.0	O(S), NS(M)
$^{1}/_{15}$ M PB pH8 0	NS (N)
$\frac{1}{G} : DW 1:20 15 min$	$\frac{110 (11)}{PP(S) NS(M)}$
O : DW, 1.20, 15 mm	$\frac{RP(N)}{RP(N)}$
$^{\circ}$ DW, 1.20, 00 mm	NS (N)
: DW, 1:100, 60 min	RP(S), NS(M)
: 0.5 mM PB, pH5.0, 1:20, 15 min	RP(M), NS(S)
: 0.5 mM PB, pH5.0, 1:20, 60 min	RP (M), NS (S)
: 0.5 mM PB, pH5.0, 1:100, 15 min	NŠ (N)
: 0.5 mM PB, pH5.0, 1:100, 60 min	RP(S), NS(M)
: 0.5 mM PB, pH6.0, 1:20, 15 min	RP (M), NS (S)
: 0.5 mM PB, pH6.0, 1:20, 60 min	$\operatorname{RP}(M), \operatorname{NS}(S)$
: 0.5 mM PB, pH6.0, 1:100, 15 min	RP(S), NS(M)
0.5 mM PB, pH 0.0, 11100, 00 mm	$\frac{RP(S)}{NS(M)}$
0.5 mM PB pH7 0, 1.20, 15 mm	$\frac{RP(M)}{NS} = \frac{S}{S}$
0.5 mM PB pH7.0, 1:20, 00 mm	NS (N)
: 0.5 mM PB, pH7.0, 1:100, 60 min	RP(M), NS(S)
: 0.5 mM PB, pH8.0, 1:20, 15 min	RP(S), NS(M)
: 0.5 mM PB, pH8.0, 1:20, 60 min	RP(M), NS(S)
: 0.5 mM PB, pH8.0, 1:100, 15 min	ŃS (N)
: 0.5 mM PB, pH8.0, 1:100, 60 min	RP (M), NS (S)
$^{1}/_{150}$ M PB, pH5.0, 1:20, 15 min	RP(M), NS(S)
$: \frac{1}{150}$ M PB, pH5.0, 1:20, 60mm	RP (N)
$^{1}_{150}$ M PB, pH5.0, 1:100, 15 min	NS(N)
$1/_{150}$ M PB, pH5.0, 1:100, 60 mm	$\frac{\text{KP}(S), \text{NS}(M)}{\text{PB}(N)}$
$^{1}/_{150}$ M PB, pH6.0, 1.20, 1011111 $^{1}/_{150}$ M PB, pH6.0, 1.20, 60min	RP(N)
$^{1}/_{150}$ M PB pH6 0 1:100 15 min	RP(S) NS(M)
$^{1}_{150}$ M PB, pH6.0, 1:100, 60 min	RP(M), NS(S)
$\frac{1}{150}$ M PB, pH7.0, 1:20, 15 min	RP(N)
$\frac{1}{150}$ M PB, pH7.0, 1:20, 60 min	RP (Ň)
: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 15 min	RP(M), NS(S)
$\frac{1}{150}$ M PB, pH7.0, 1:100, 60 min	RP (N)
: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 15 min	$\operatorname{RP}(S)$, NS (M)
: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 60 min	RP(S), NS(M)
(1/150 M PB, pH8.0, 1:100, 15min)	KP(S), NS(M)
1.7_{150} M PB, pH8.0, 1:100, 60min	KF (5), NS (M)

 Table 1-1.
 Romanowsky-type staining characteristics of panchromatophilic granule (PG) in neutrophil from African lungfish, *Protopterus annectens*

¹MG, May-Grünwald; G, Giemsa; DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

²B, blue; O, orange; RP, reddish purple; NS, not stained; N, numerous; M, moderate; S, some.

Staining condition ^{1,2}	Color and number of PG ³
MGG : DW, 1:20, 15 min	
: DW, 1:20, 60 min	RP (Ň)
: DW, 1:100 , 15 min	RP (Ň)
: DW, 1:100 , 60 min	RP (N)
: 5 mM PB, pH5.0, 1:20, 15 min	RP (N)
: 5 mM PB, pH5.0, 1:20, 60 min	RP (N)
: 5 mM PB, pH5.0, 1:100, 15 min	RP (N)
: 5 mM PB, pH5.0, 1:100, 60 min	RP (N)
: 5 mM PB, pH6.0, 1:20, 15 min	RP (N)
: 5 mM PB, pH6.0, 1:20, 60 min	RP (N)
: 5 mM PB, pH6.0, 1:100, 15 min	RP (N)
: 5 mM PB, pH6.0, 1:100, 60 min	RP (N)
: 5 mM PB, pH7.0, 1:20, 15 min	RP (N)
: 5 mM PB, pH7.0, 1:20, 60 min	RP (N)
: 5 mM PB, pH7.0, 1:100, 15 min	RP (N)
: 5 mM PB, pH7.0, 1:100, 60 min	RP (N)
: 5 mM PB, pH8.0, 1:20, 15 min	RP (S), NS (M)
: 5 mM PB, pH8.0, 1:20, 60 min	RP(M), NS(S)
: 5 mM PB, pH8.0, 1:100, 15 min	RP (S), NS (M)
: 5 mM PB, pH8.0, 1:100, 60 min	RP(S), NS(M)
: ¹ / ₁₅ M PB, pH5.0, 1:20, 15min	RP(N)
: ¹ / ₁₅ M PB, pH5.0, 1:20, 60min	RP(N)
: ¹ / ₁₅ M PB, pH5.0, 1:100, 15 min	RP(M), NS(S)
: ¹ / ₁₅ M PB, pH5.0, 1:100, 60 mm	RP(M), NS(S)
$: \frac{1}{15}$ M PB, pH6.0, 1:20, 15 min	$\frac{RP(N)}{RP(N)}$
: ¹ / ₁₅ M PB, pH6.0, 1:20, 60 mm	RP(N)
: ⁷ / ₁₅ M PB, pH6.0, 1:100, 15 min	RP (N)
: ⁷ / ₁₅ M PB, pH6.0, 1:100, 60 mm	RP (N)
: 7 ₁₅ M PB, pH7.0, 1:20, 15mm	NS (N)
: 7/15 M PB, pH7.0, 1:20, 60mm	NS (N)
$: 7_{15}$ M PB, pH7.0, 1:100, 15 min	NS (N)
$1/_{15}$ M PB, pH/.0, 1:100, 60 min	NS (N)
$1/_{15}$ M PB, pH8.0, 1:20, 15 min	NS (N)
$\frac{1}{15}$ M PB, pH8.0, 1:20, 60 min	NS (N)
$(7)_{15}$ M PB, pH8.0, 1:100, 15mm	NS (N)
: 7/15 M PB, pH8.0, 1:100, 60min	NS (N)

 Table 1-2.
 Romanowsky-type staining characteristics of panchromatophilic granule (PG) in neutrophil from African lungfish, *Protopterus annectens*

¹MGG, May-Grünwald · Giemsa; DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.
²Diluent for Giemsa of MGG stain were DW, 0.5 mM PB or ¹/₁₅₀ M PB.
³B, blue; O, orange; RP, reddish purple; NS, not stained; N, numerous; M, moderate; S, some.

Test	Positive site (shape and number)				
Periodic acid Schiff reaction (PAS)	Granule (round or rod, many, equivalent to PG)				
PAS after digestion with α -amylase	Granule (round or rod, many, equivalent to PG)				
Alcian blue (pH1.0)	-				
Alcian blue (pH2.5)	_				
Toluidine blue (distilled water)	Granule (round or rod, some, equivalent to some PG)				
Sudan black B	_				
SudanIII	_				
Oil red O	_				
Alkaline phosphatase	_				
Acid phosphatase	Granule (round or oval, many, equivalent to PG)				
β-Glucronidase	_				
α -Naphtyl acetate esterase	Granule (round or rod, many, equivalent to PG)				
α-Naphtyl butyrate esterase	Granule (round or rod, many, equivalent to PG)				
Naphthol AS-D chloroacetate esterase	Granule (round or rod, many, equivalent to PG)				
Peroxidase					
- non detection					

Table 2. Cytochemical reactivities of neutrophil from African lungfish, Protopterus annectens

, non detection.

考 察

P. annectensの好中球には、種々の染色性を示す1種類 の顆粒(P顆粒)が観察された。本顆粒は、MG染色では 淡橙色または淡青色を示した。これらの色調は、MG染色 液中のエオシン酸メチレンブルーが水溶液中で解離して形 成されたエオシンおよびメチレンブルーによると思われ る。メチレンブルーは被染色物によっては異調染色性を示 すこともあるが³⁴⁾, MG染色でP顆粒は淡青色であったこ とから、本顆粒はメチレンブルーによって正調染色性を示 したと考えられる。ギムザ染色液は、エオシン酸メチレン ブルー,エオシン酸アズールB,アズールBおよびメチレ ンブルーを含むが、水溶液中ではエオシン酸メチレンブ ルーとエオシン酸アズールBがそれぞれ解離してエオシ ン、メチレンブルーおよびアズールBとなるので、染色時 にはこれら3種類の色素によって染色が起こる。アズール Bもメチレンブルーと同様に水溶液中では青色であり、被 染色物によっては異調染色性を示す。P顆粒は、ギムザ染 色によって赤紫色を呈した。この色調は、メチレンブルー またはアズールBによる異調染色性を示していると思われ るが、メチレンブルーは、上述の様に、P顆粒を正調に染 める。したがって、P顆粒の赤紫色は、アズールBによる 異調染色の結果生じたと推察される。

ハイギョ類の顆粒球の分類は混乱しているが、これまで

に、オーストラリアハイギョとアフリカハイギョ類におい て「好中球 (neutrophil)」と称される血球が観察されてい る^{2-4,11,14)}。Ward (1969) がオーストラリアハイギョで観 察した好中球は、メタノール固定した塗沫標本にライト染 色を施したものであり、細胞質は多くの微細なピンク色を 帯びた顆粒によって満たされるが、時にはそれらは観察困 難であると述べている²⁾。また、Hine *et al.*(1990)が観 察したオーストラリアハイギョの好中球には、ライト染色に よって顆粒は存在しないか、あるいは微細なアズール好性 顆粒が中程度見られるとしている³⁾。本研究においても, P. annectensの好中球は、染色条件によって、様々な色調 を示し、また、染色されない場合もあったことから、オース トラリアハイギョにおいて報告された好中球は、本研究の好 中球と同じ種類の顆粒球と考えられる。しかし、DeLaney et al. (1976) がアフリカハイギョ類のP. aethiopicusで観察 した好中球は、ライト-ギムザ染色標本上で、微細な赤い 顆粒を有しており11),彼らの示した図(白黒写真)からは、 顆粒の形状は円形または卵円形である。また, Champy and Louvel (1939-1940) が本研究と同じ魚種で観察した 好中球も、顆粒は好酸性を示すとしており¹⁴⁾、彼らの示し た図(白黒イラスト)では顆粒の形状は円形または卵円形 である。したがって、これらの報告における好中球は、形 状および染色性から、本研究においてP. annectensに観察 された好中球とは異なる種類の顆粒球であると考えられ

る。一方, Barber and Westermann (1978) がアフリカ ハイギョ類(種名不明)に観察した好異球(heterophil) は、MGG染色によってほのかに灰色がかった藤色(faint grey-mauve) を呈する顆粒を有することから³³⁾,本研究 の好中球と同じ顆粒球と思われる。Champy and Louvel (1939-1940) が報告している骨髄球性好中球 (myelocytic neutrophil)は、Romanowsky染色によって好塩基性を示 す顆粒を有し、好塩基球とは区別されている¹⁴⁾。本研究の 好中球も,染色条件によっては、顆粒が正調メチレンブ ルー好性を呈することから,彼らの骨髄球性好中球は,本 研究の好中球と同一の種類かもしれない。また、da S Ribeiro et al. (2007) がミナミアメリカハイギョに観察し た多形核 無顆粒 球 (polymorphonuclear agranulocyte) は、メタノール固定した塗沫標本にギムザ染色を施して観 察されており、彼女らは、無顆粒球としているが電子顕微 鏡観察では、顆粒を認めている⁹⁾。本研究においても、好 中球の顆粒は、染色条件によっては染まらないことから、 彼女らが観察した多形核無顆粒球は好中球ではないかと推 察される。

これまでに、著者らが報告した魚種において、好中球内の同一顆粒が、種々の色調に染まることは認められていない¹⁵⁻³⁰⁾。また、好中球内に異調アズール好性を示す顆粒も 観察されていない¹⁵⁻³⁰⁾。

各種魚類の好中球において、好塩基性を示す不定形の安本小体(Y小体)(Yasumoto body, Y-body)が観察されている^{15-18,21-30)}。本小体はヌタウナギにも観察されていることから、本小体は少なくとも魚類に共通するものと考えられている¹⁶⁾。しかし、*P. annectens*の好中球には、Y小体は観察されなかった。コイの好中球にもY小体は認められていないが^{19,20)}、病原細菌*Aeromonas hydrophila*に人為感染させることで、本小体を有する好中球が血液中に出現することが報告されている³⁵⁾。したがって、アフリカハイギョも、細菌などの感染によってY小体が出現するかもしれない。

細胞化学的特性から, P. annectens好中球のP顆粒の成 分を次のように推定した。AcP, a-NAE, a-NAEおよび NASDCAE陽性顆粒は, 形状および顆粒数がP顆粒と類似 していたことから, これら酵素はP顆粒に存在すると思わ れる。また, PAS陽性顆粒も形態学的特徴から, P顆粒に 相当すると考えられる。TB陽性顆粒の数はP顆粒よりも 少ないが, 形状が類似することから, P顆粒のいくつかが TB陽性であると推察される。また, TB陽性顆粒は, 赤紫 色を呈したことから、異調染色性を示していると言える。 オーストラリアハイギョでは、好中球の詳細な細胞化学的 性状が明らかとなっており⁴⁾,好中球には,AIP,AcP, a-NAEおよびNASDCAEが検出され、AcPは顆粒に存在 するとされている⁴⁾。また、好中球顆粒はPASによって染 色されると報告されている4)。一方、この好中球には、 N-acetyl- β -glucosaminidase, β -galactosidase, acetyl-Ltyrosine - a -naphthyl esterase, tosyl-L-lysine - a -naphthyl esterase, β -Glu, a-NBEおよびペルオキシダーゼのいずれ も検出されていない⁴⁾。本研究においても, P. annectens の好中球顆粒はPASおよびAcP陽性であった。また、a -NAEとNASDCAEも顆粒に陽性反応が認められた。さら に, β-Gluとペルオキシダーゼ活性はP. annectensの好中球 にも見られなかった。しかし, a-NBE活性はP. annectens の好中球のP顆粒に陽性反応が検出され、AlP活性は認め られなかった。したがって、ハイギョ類の種間で、これら 一部の酵素活性の有無に違いがあると考えられる。なお, AcPはミナミアメリカハイギョの多形核無顆粒球にも検出 されている⁹⁾。

これまでに、著者らが調べた各種魚類の好中球におい て、種々の酵素が検出されているが(Table 3)、存在部位 が推定されているものは少なく、ヌタウナギ好中球ではッ 顆粒が a -NBE陽性であり¹⁶⁾, *P. endlicheri*好中球では. a -1 顆粒にAIP, AcP, β-Glu, a-NAE, a-NBEおよび NASDCAEが存在すると考えられている¹⁷⁾。また、アジア アロワナ好中球では y 顆粒にNASDCAEが¹⁸⁾, ウナギの ッ顆粒にはAcP. a-NAEおよび a-NBEが¹⁵⁾. ノーザン パイクのβ顆粒にAcP活性が²²⁾,マダイのα顆粒にAcP, α -NAEおよびNASDCAEが²⁹⁾, ブリでは β 顆粒にAIP が、 y 顆粒に a -NAEが存在するとされている³⁰⁾。一方, ペルオキシダーゼはこれまでに、アジアアロワナ、ウナ ギ, ノーザンパイク, ブルーギル, スズキ, ヒラスズキ, メジナ,マダイ,ブリ,ヒラメおよびトラフグにおいて観 察されており、顆粒数、大きさおよび形状が類似している ことから、本酵素はβ顆粒に局在すると考えられている ^{15,18,21-23,25,26,29,30)}。また、ヌタウナギ、P. endlicheri、アジ アアロワナ、ウナギ、ノーザンパイク、ブルーギル、スズ キ, ヒラスズキ, メジナ, マダイ, ブリ, ヒラメおよびト ラフグにおいて、好中球にPAS陽性部位とTB陽性部位が 観察されている。これらのPAS陽性部位はα-アミラーゼ で消化されることから、グリコーゲンに相当し、顆粒とは 異なるとされている^{15-18,21-26,29,30)}。しかし, P. annectensで

	Fish and type of cytoplasmic granule ²												
Test ¹	Eb	Pa	Pe	Sf	Aj	El	Lm	Lj, Ll	Sq	Gp	Pm	Po	Tr
	γ	Р	α1, α2, γ	α, β, γ	α, β, γ	β	β	β	α, β, γ	β	α, β	β	α, β
PAS	H&G:+	G:+(P)	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+	H&G:+
PAS-αA	H&G:-	G:+(P)	H&G:-	H&G:-	H&G:-	H&G:-	H&G:-	H&G:-	H&G:	H&G:-	H&G:-	H&G:-	H&G:-
AB (pH1.0)		—	-		_								—
AB (pH2.5)						—				-			_
ТВ	+ (Y)	+(P)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)	+(Y)
SBB		-	$+(\alpha 1)$	+	+	+	+	+	+(β)	+	+(β)	+	+
SIII	_	-	-	-	_	_		—	-			—	—
ORO		—				—						_	
AlP	-		$+(\alpha 1)$	-	_				+(β)	+			—
AcP	_	+(P)	$+(\alpha 1)$	—	+(γ)	+(β)		+	+	+	$+(\alpha)$	+	+
β-Glu	_		$+(\alpha 1)$	_	+	+	_				+	—	
α-NAE	_	+(P)	+(α1)	+	+(γ)	+	-	+	+(γ)	+	+(α)	+	+
α-NBE	+(γ)	+(P)	$+(\alpha 1)$	+	+(γ)	+			—		+		+
NASDCAE	_	+(P)	$+(\alpha 1)$	$+(\gamma)$	+	+		+		—	+(α)		+ .
РО	—		-	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)

 Table 3. Comparison of cytochemical characteristics of neutrophils from various fish species

¹PAS, periodic acid Schiff reaction; PAS-αA, PAS after α-amylase digestion; AB, alcian blue; TB, toluidine blue; SBB, sudan black B; SII, sudan II; ORO, oil red O; AlP, alkaline phosphatase; AcP, acid phosphatase; β-Glu, β-glucronidase; α-NAE, α-naphtyl acetate esterase; α-NBE, α-Naphtyl butyrate esterase; NASDCAE, naphthol AS-D chloroacetate esterase; PO, peroxidase.

²*Eb*, *Eptatretus burgeri* (hagfish, Kondo and Takahashi (2009)¹⁶); *Pa*, *Protopterus annectens* (African lungfish, present report); *Pe*, *Polypterus endlicheri* (Kondo and Takahashi (2009)¹⁷); *Sf*, *Scleropages formosus* (Asian arowana, Kondo and Takahashi (2009)¹⁸); *Aj*, *Anguilla japonica* (Japanese eel, Kondo and Takahashi (2009)¹⁵); *El*, *Exos lucius* (northern pike, Kondo *et al.* (2008)²⁵); *Lj*, *Lateolabrax japonicus* (Japanese seabass, Kondo *et al.* (2007)²⁶); *Ll*, *Lateolabrax latus* (seabass, Kondo *et al.* (2007)²⁶); *Sg*, *Seriola quinqueradiata* (Japanese amberjack, Kondo *et al.* (2009)³⁰); *Gp*, *Girella punctata* (rudderfish, Kondo *et al.* (2005)²⁴); *Pm*, *Pagrus major* (red sea-bream, Kondo *et al.* (2009)²⁹); *Po*, *Paralichthys olivaceus* (Japanese flounder, Kondo *et al.* (2005)²⁴); *Tr*, *Takifugu rubripes* (tiger puffer, Kondo *et al.* (2007)²¹); *a*, eosinophilic granule; *αl*, *α* type 1; *α*2, *α* type 2; *β*, chromophobic granule; *γ*, basophilic granule; *P*, positive; *Y*, Yasumoto body.

は、P顆粒がPAS陽性であり、*a*-アミラーゼで消化されな かった。また、TB陽性部位は、前述の各種魚類では、形 態学的特徴からY小体に相当するとされている^{15-18,21-} ^{26,29,30)}。しかし、*P. annectens*では、一部のP顆粒が染色さ れた。

本研究によって, *P. annectens*の好中球には1種類の顆 粒(P顆粒)が存在し, 顆粒中には, AcP, *a*-NAE, *a*-NBEおよびNASDCAEが認められるとともに, PAS陽性 であり, 一部のP顆粒はTBによって異調染色性を呈する ことが明らかとなった。

文 献

- 1) 矢部 衛:魚類の多様性と系統分類,松井正文編 脊 椎動物の多様性と系統. 裳華房,東京,46-93 (2006)
- Ward J W : Hematological studies on the Australian lungfish, *Neoceratodus forsteri*. *Copeia*, 1969(3), 633– 635 (1969)
- 3) Hine P M, Lester R J G, Wain J M : Observations on the blood of the Australian lungfish, *Neoceratodus forsteri* Klefft. I. Ultrastructure of granulocytes, monocytes and thrombocytes. *Aust J Zool*, 38, 131– 144 (1990)
- 4) Hine P M, Wain J M, Lester R J G: Observations on the blood of the Australian lungfish, *Neoceratodus forsteri* Klefft. II. Enzyme cytochemistry of blood cells, peritoneal macrophages and melano-macrophages. *Aust J Zool*, 38, 145-154 (1990)
- 5) Bryce T H : Histogenesis of the blood in larval forms of *Lepidosiren. Lancet*, 167, 406 (1904)
- 6) Bryce T H: The histology of the blood of the larva of *Lepidosiren paradoxa*. Part I. Structure of the resting and dividing corpuscles. *Trans Roy Soc Edin*, 41, 291–310 plus 5 plates (I to V) (1905)
- 7) Bryce T H : On the histology of the blood of the larva of *Lepidosiren paradoxa*. Part II. Hæmatogenesis. *Trans Roy Soc Edin*, 41, 435-467 plus 4 plates (I to N) (1906)
- 8) Bielek E, Strauss B : Ultrastructure of the granulocytes of the South American lungfish, *Lepidosiren paradoxa* : morphogenesis and comparison to other leucocytes. *J Morphol*, 218, 29–41 (1993)

- 9) da S Ribeiro M L, DaMatta R A, Diniz J A P, de Souza W, do Nascimento J L M, de Carvalho T M U : Blood and inflammatory cells of the lungfish *Lepidosiren paradoxa. Fish Shellfish Immunol*, 23, 178-187 (2007)
- 10) Jordan H E, Speidel C C : Blood formation in the African lungfish, under normal conditions and under conditions of prolonged estivation and recovery. J Morphol Physiol, 51, 319-371 (1931)
- DeLaney R G, Shub C, Fishman A P : Hematologic observations on the aquatic and estivating African lungfish, *Protopterus aethiopicus*. *Copeia*, 1976(3), 423-434 (1976)
- 12) Dustin P: Recherches sur les organes hématopoïètiques du *Protopterus dolloi*. Archives de Biologie, 45, 1-26 plus 2 plates (I and II) (1934)
- 13) Parker W N: On the anatomy and physiology of Protopterus annectens. The trans Roy Irish Acad. 30, 109-230 plus 11 plates (VII to XVII) (1892)
- 14) Champy Ch, Louvel J : Recherches sur l'hématopoièse chez Protopterus annectens. Arch D'anat Micr, 35, 243-281 plus 1 plate (I X) (1939-1940)
- 15)近藤昌和,高橋幸則:ウナギ好中球の形態学的および 細胞化学的特徴.水大研報,58,1-13 (2009)
- 16)近藤昌和,高橋幸則:ヌタウナギ好中球の形態学的および細胞化学的特徴.水大研報,57,299-308 (2009)
- 17)近藤昌和,高橋幸則:ポリプテルス好中球の形態学的および細胞化学的特徴.水大研報,57,283-297
 (2009)
- 近藤昌和,高橋幸則:アジアアロワナの好中球顆粒. 水大研報,57,219-226 (2009)
- 19) 近藤昌和,安本信哉,高橋幸則:コイ好中球のメイ-グリュンワルド・ギムザ染色性.水大研報,50,109-117 (2002)
- 近藤昌和,安本信哉,高橋幸則:コイ好中球のアズー ル顆粒,水大研報,51,17-29 (2002)
- 21)近藤昌和,稲川裕之,池田 至,山元憲一,高橋幸
 則:トラフグ好中球の形態学的および細胞化学的特
 徴.水大研報,55,133-139 (2007)
- 22)近藤昌和,高橋幸則,山元憲一:ノーザンパイク好中 球の形態学的および細胞化学的特徴.水大研報,56, 317-321 (2008)
- 23) 近藤昌和, 金丸俊介, 高橋幸則:メジナの好中球顆

粒. 水大研報, 52, 67-71 (2004)

- 24)近藤昌和,金丸俊介,柏村直宏,稲川裕之,高橋幸
 則:ヒラメおよびメジナ好中球顆粒の細胞化学的特
 徴.水大研報,53,203-209 (2005)
- 25)近藤昌和,柏村直宏,金丸俊介,稲川裕之,高橋幸 則:サンフィッシュ科魚類(オオクチバス,ブルーギ ル)の好中球顆粒.水大研報,53,197-202 (2005)
- 26)近藤昌和,稲川裕之,高橋幸則:スズキ科魚類(スズ キ,ヒラスズキ,タイリクスズキ)の好中球の形態 学的および細胞化学的特徴、水大研報,55,141-147 (2007)
- 27) 安本信哉,近藤昌和,高橋幸則:テラピア好中球顆粒のメイ-グリュンワルド・ギムザ染色性,水大研報,51,79-86 (2003)
- 28)近藤昌和,安本信哉,高橋幸則:イサキ好中球の顆粒.水大研報,52,45-48 (2004)
- 近藤昌和,坂口隆亮,金丸俊介,柏村直宏,高橋幸 則:マダイ好中球の形態学的および細胞化学的特徴. 水大研報,58,15-22 (2009)

- 30)近藤昌和,坂口隆亮,金丸俊介,柏村直宏,高橋幸
 則:ブリの好中球の形態学的および細胞化学的特徴.
 水大研報,58,101-111 (2009)
- 31) 甲斐嘉晃:ポリプテルス目. 魚の科学事典, 朝倉書店, 東京, 41 (2005)
- 32) Gill A C, Mooi R D : Phylogeny and Systematics of Fishes. In : Hart P J B, Reynolds J D (eds) Handbook of Fish Biology and Fisheries Vol. 1. Blackwell Publishing, Oxford, 15-42 (2002)
- 33) Barber D L, Westermann J E M : Occurrence of the periodic acid-Schiff positive granular leucocyte (PAS-GL) in some fishes and its significance. J Fish Biol, 12, 35-43 (1978)
- 34) 西 国広,阿南健一,須田正洋:染色法-普通染色またはRomanowsky染色による形態の違いについて-.
 Medical Technology, 19, 630-636 (1991)
- 35)近藤昌和,高橋幸則:病原細菌Aeromonas hydrophila に感染したコイの好中球の安本小体.水大研報,56, 323-327 (2008)