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Neural Network Learning of Ocean Wave 
Condition by Texture Analysis 

Eiji Morimoto 1 1", Makoto Nakamura 1 

Abstract: In this study, littoral wave conditions were transformed into image data and used to assess 
the applicability of the method to constructing a system for automatically digitizing and monitoring wave 
conditions. An image of ocean wave conditions was treated as a texture and its characteristics were 
examined as texture feature quantities representing the surface conditions in response to wind. These 
feature quantities were input to a hierarchical neural network for learning. The network, which had a 
multilayer structure adapted for the back-propagation algorithm, facilitated the study of the influence of 
learning conditions on the network structure. In addition, digital sensitivity analysis was performed to 
identify optimal calculation conditions for presenting an optimal image of the sea surface. Analyses were 
also performed using spatial color concentration dependence, with texture feature quantities consisting 
of energy, entropy, correlation, local uniformity, and inertia. 
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Introduction 

It is vital that people who are responsible for the 

operation of ships, such as fishermen, as well as people 

living on or near the coast, keep abreast of the wave 

conditions at sea. As a consequence, a variety of 

techniques, including SBM, spectral analysis and other 

methods, have been developed!) to plan littoral fishing 

expeditions, prepare for storms, and plan other activities 

that affect people's lives. Given the importance of 

obtaining information about current wave conditions in 

real time, several methods employing direct information 

have been deployed, particularly in coastal fisheries, to 

anticipate the effects of waves on fixed nets and 

aquaculture equipment or support decisions related to 

whether of not to issue warnings regarding whether it is 

safe to leave or return to port. If it were possible to 

perceive ocean conditions as an image, then it would be 

possible to convey information such as wind direction and 

force, wave height. etc. immediately to fishermen. Indeed, 

it is considered that developing a system capable of 
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visualizing and analyzing the ocean in real time would be 

very useful. 

In the present study, wave conditions were interpreted 

using image textures. The texture feature quantities of 

the sea surface were then calculated and input into a 

neural network for learning2
-
4

), and the ability of the 

network to detect and predict the wind force class was 

investigated. 

Texture Analysis 

The word "texture" refers to patterns consisting of 

two-dimensional variations of color and color depth. On 

this basis, regions can be characterized based on the 

extent of their uniformity. In the field of image analysis, 

two kinds of texture analysis exist: structural and 

statisticaI5
) . Structural level texture analysis relies on 

extracting the fundamental elements in the image that 

determine texture (i.e. straight lines, points, etc.) from 

the picture elements, and then to find the rules governing 

how these are aligned with each other. In statistical level 
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texture analysis. we focus on the pixel color depth and 

calculate the texture feature quantities expressing the 

nature of the image in terms of uniformity. orientation. 

changes in contrast. etc. Natural ocean waves. the topic 

of this study. are like wood grain. sandy regions and 

grassy regions in that they show fine detail and have 

irregular patterns. Thus. in order to characterize such 

areas. the texture of the ocean surface was analyzed at 

the statistical level and classified based on the statistical 

characteristics of color depth distribution of the pixels. 

The wave characteristics were calculated using a color 

depth co-occurrence matrix created on the basis of spatial 

color concentration dependence. The texture feature 

quantities were found using the following equation' ) : 

Energy: 

Entropy: 

Correlation : 

H=- IIpU .j) logP U .j) 

c= II Ci- v') (j - v.) P (i .j) 

( a x a ,) 

Local uniformity: L= II PCi. j ). 
1+ (£ _j ) 2 

Inertia: 

where N was the color depth level of the image. v, and v,. 

were the mean color depths, and a., and a,. were the 

corresponding variances. 

Experiment and Observations 

First. the image was analyzed using the color depth co­

occurrence matrix. Each wave image was divided into a 

grid of regions and the wind force was classified into the 

five classes of the Beaufort scale as shown in Table l. 

The analytical direction was 0'. Although the color indices 

included red. green and blue, this study only used the red 

index to extract and calculate texture feature values for 

of energy. entropy. extent of correlation. local uniformity. 

and inertia. Ten values for each of these features were 

input into the neural network as teacher patterns and the 

learning process of the program was initiated. Next. the 

textures of wave images of with unknown wind force 

classes were analyzed and the extracted texture feature 

values were input to the neural network to predict the 

wind force classes. The predicted values were then 

evaluated using the results for the wind foi'ce scale 

predicted from the wave image in the teacher patterns 

originally used to teach the neural network. When values 

corresponding to the wave images were obtained. the 

neural network was considered to have learned correctly 

and that it was capable of conducting accurate 

evaluations. 

Table 1. Beaufort scale of wind force 

Wind Wind speed Wave 

force Sea surface ht. 
[kt] [m/s] 

class [m] 

1 1~3 0.3~1.5 Waves resemble fish scales 0.1 

Small waves created, but crests do not 
2 4~6 1.6~3.3 0.2 

break 

Larger waves created, occasional 
3 7~10 3.4~5.4 0.6 

whitecaps 

Small-medium waves. Frequent 
4 1l~16 5.5~7.9 1 

whitecaps. 

5 17~21 8.0~10.7 Medium waves, numerous whitecaps. 2 
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Wave images used as teacher patterns 

Figure I shows the wave images used as teacher patterns 

for wind force classesl - 5, The classes used as teacher 

patterns in the neural network ranged from 1.0 to 5,0 

rather than I to 5, Figure 2 shows the wave images used 

as neural network inputs to predict wind force classes. 

and Table 2 shows the learning conditions employed for 

the neural network Table 3 shows the results of the neural 

network predictions after learning the wind force classes 

from each wave image, out 1 is the teacher data and Out 

2 is the predicted result. It is clear from the Table 3 that 

satisfactory results were obtained for all the wind force 

scales, 

r • ~ ~. - •• - - -
', ....... -..... ,~-.. 

~-:.--:-=- . < - • -- -~ -.~...... . - . - .. --..- --" ----
.~.-r -..... _'" - -:-

(a) Class 1 (b) Class 2 (c) Class 3 

--- -
- --

. . 

(d) Class 4 (e) Class 5 

Fig. 1. Teacher patterns 

-

- - --
(a) Class 1 (b) Class 2 (c) Class 3 

Fig. 2. Neural network inputs 

Table 2. Learning conditions used for the neural network 

Learning itera tions 10000 

Permissible er ror 0.1 

Number of hidden units 10 

Random numbers 1 

Fraction 100.00% 

Lower limit -1 

Upper limit 1 
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Table 3. Prediction by learned networks 

Input 

No. Energy Entropy Correlation 

1 0.0272 3.905 0.6679 

2 0.0286 3.834 0.6555 

3 0.0347 3.65 0.6941 

4 0.0179 4.38 0.954 

5 0.0223 4.136 0.9268 

6 0.0204 4.167 0.9706 

7 0.0875 2.875 0.8227 

8 0.0729 3.107 0.8179 

9 0.0633 3.066 0.8585 

10 0.0811 3.315 0.9396 

11 0.0763 3.393 0.9559 

12 0.0725 3.569 0.9498 

13 0.0141 4.785 0.8099 

14 0.021 4.712 0.7097 

15 0.0132 4.907 0.8363 

Structure of learned network and predicted results 

Figure 3 shows the structure of the network after the 

learning process. The numbers with plus or minus sign in 

the figure indicate positive and negative combination 

loads. respectively. The findings show that inertia 

contributed strongly to the observed results. while 

energy had only a weak effect on the results. The results 

of the neural network predictions revealed that the wave 

images could be used to learn wind force classes and that 

the results predicted by the network were correct. The 

first test wave image was assessed by the neural 

network at a wind force class of 3.736. This was higher 

than a class 3 wind force and slightly less than a class 4 

Output 

Wind 
Local 

Inertia force Predicted 
uniformity 

class value 

0.5159 2.65 1 1.12 

0.5233 2.521 1 1.09 

0.5655 1.973 1 1.09 

0.638 1.694 2 1.95 

0.6339 1.556 2 1.73 

0.7034 1.033 2 2.03 

0.753 0.757 3 3.18 

0.7206 1.071 3 2.96 

0.7365 0.73 3 2.74 

0.7224 1.45 4 3.92 

0.718 1.415 4 3.9 

0.7109 1.636 4 3.99 

0.4688 5.48 5 4.88 

0.4741 9.393 5 5 

0.503 6.425 5 4.99 

wind force. Comparing this value visually with the wave 

images used as teacher patterns revealed that this 

average was close to the image used to depict the class 4 

wind force . The neural network was thus capable of 

making a reasonably correct prediction without the 

knowledge of the wind force class used to derive the 

wave images. The mean value of the second test image 

was 3.385. which is close to that derived from the wave 

image used to learn a class 3 wind force . and the mean 

value for the third test image was 1.915. which was close 

to the wave image used to learn a class 2 wind force. These 

were all classified by the neural network with reasonable 

accuracy. 
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Fig. 3. The Structure of neural network after leaning 

Learning Conditions for the Neural Network 

The influence of the number of hidden units, number of 

learning iterations and allowable error were examined in 

order to improve the predictive capacity of the neural 

network. The influence of varying the number of hidden 

units, was studied first. The number was set to 3, 5, 10, 

15 and 20, and the predictions of the neural network after 

learning were examined to determine which of the 

results most closely reflected the teacher data. On closer 

visual examination, no differences were apparent between 

the obtained results irrespective of how many hidden 

units, there were. Since the analysis with 10 units best 

reflected the teacher data, this number was employed in 

the following analyses. 

Regarding the number of iterations , no improvement 

in prediction accuracy was found by increasing this, 

because, irrespective of how high the maximum number 

of iterations was set, the neural network completed 

learning in 760 iterations. 

The allowable error was set to values ranging between 

0.01 and 0.0001 to assess for its influence on convergence 

by the neural network. As a result no great differences 

were found in the predictions while varying this 

parameter, but the rate of convergence diminished as the 

allowable error was reduced. A rate of convergence of 

70-10096 was considered desirable, so the allowable error 

was left unchanged for further learning. 

Effect of Setting Texture Region 

Methods for setting the region in the wave image as 

the object for texture analysis were also investigated. 

Since the image of the sea region can be cut either 

vertically or horizontally, these orientations were 

compared for their effect on network learning. Figure 4 

shows the image cut vertically to give 10 texture regions 

that were equal in size. The red signal was analyzed and 

texture was analyzed in the 00 direction. Conversely, 

Figure 5 shows the image cut horizontally into 10 texture 

regions that were equal in size. As before, the red signal 

was analyzed and the texture was examined in the 00 

direction. Table 4 shows the results of this analysis and 

Table 5 summarizes the results of neural network learning 

under the two conditions described above. 

Data Nos. 1-10 in the Table 5 show the learning results 

derived from teacher data using wave image E, which 

was used previously for learning. The items listed 

vertically in the table (Data Nos. 1- 10) correspond to the 

cases when the image was divided vertically for the 
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texture analysis and learning, while the items listed 

horizontally (Nos. 1-10) refer to those cases in which the 

image was divided horizontally for texture analysis and 

learning. Figure 6 presents the predicted results obtained 

after learning by the neural network. Data Nos. 1- 10 in 

the figure are the resul ts derived from the teacher data 

in the wave image and Data Nos. 11-20 (in yellow) 

represent the results predicted by the neural networks 

from the vertical divisions of the image. Data Nos. 21 -30 

(l ight blue ) represent the results predicted from 

horizontal divisions of the image. When the results were 

Fig. 4. Vertical cut image 
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compared, the mean predicted value derived from the 

vertical divisions was 4.91. while that derived from the 

hori zontal divisions was only slightly less at 4.85. Data 

Nos. 22 and 23 were found to have relatively high errors 

due to the lower perspective of the texture region in the 

vertically divided image than in the horizontally divided 

image. which resulted in a lower error in the depth of 

image color. We therefore conclude that better 

pred ictions can be obtained if the image is divided 

vertically when setting the texture regions. 

Fig. 5. Horizontal cut image 

~ 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 

Data No. 
Fig. 6. Prediction by learned neural network 
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Table 4. Properties for image dividing direction 

~ 
Local 

Energy Entropy Con-elation Inertia 
uniformity 

Vertical 1 0.0147 4.726 0.8016 0.5349 5.903 

Vertical 2 0.0139 4.886 0.828 0.508 7.012 

Vertical 3 0.0128 4.902 0.8323 0.5069 6.545 

Vertical 4 0.0148 4.721 0.8073 0.5396 4.567 

Vertical 5 0.011 5.037 0.8528 0.4794 6.798 

Horizontal 1 0.0144 4.84 0.852 0.462 5.769 

Horizontal 2 0.0 169 4.618 0.8323 0.5001 4.523 

Horizontal 3 0.0168 4.612 0.8284 0.5018 4.355 

Horizontal 4 0.0143 4.754 0.8491 0.4953 4.93 

Horizontal 5 0.0161 4.668 0.832 0.5207 4.979 

Table 5. Prediction by neural networks 

I~ Energy Entropy Correlation 

1 O. 0141 4. 7850 O. 8099 

2 O. 0210 4.7120 O. 7097 

3 0.0132 4. 9070 O. 8363 

4 O. 0134 4. 8400 0.8185 

5 0.0132 4. 8630 0.8274 

6 O. 0248 4. 5430 O. 7298 

7 O. 0163 4.7450 0.7919 

8 O. 0166 4. 6630 O. 8332 

9 O. 0144 4. 8610 O. 7894 

10 O. 0195 4.5170 O. 7969 

Summary 

We used a neural network to predict wind force by 

analyzing the texture on an image of waves. The neural 

network was trained using these images of ocean waves. 

and comparisons with other teacher patterns revealed 

that the method provided accurate predictions. Thus. if a 

neural network is trained using wave images with known 

Local 
Inertia Out 1 Out 2 

uniformity 

O. 4688 5. 4800 5. 00 4. 88 

0.4741 9. 3930 5. 00 5. 00 

O. 5030 6. 4250 5. 00 4. 99 

0.4740 5. 8460 5. 00 4. 95 

0.4457 5. 9320 5. 00 4. 94 

O. 5124 7. 9580 5. 00 5. 00 

0.4874 6. 5360 5. 00 4. 98 

O. 4934 4. 8380 5. 00 4. 76 

O. 4914 7. 2410 5. 00 4. 99 

O. 4994 4. 6560 5. 00 4. 61 

wind force classes. then it can be used to assess and 

predict wind force classes based on the texture of a wave 

image with an unknown wind force class. Using the 

texture analysis of a wave image provides the network 

with sufficient texture feature quantities for analysis. and 

no calculations of other elements. such as the wavelength. 

frequency or wave height. are necessary. Data for 

analysis and learning by a neural network are straight 
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forward to acquire. It was found that the data generated 

by the neural network were slightly more robust when 

the texture regions sampled for texture analysis were 

taken in the vertical direction. However, neural networks 

have an extremely complicated struc ture , and the 

equations describing such networks are complicated. It 

was therefore impractical to make any adjustments to 

the neural network and conduct trial runs of the modified 

network in order to improve the prediction results. In the 

future, this system should be optimized to analyze an 

increased number of images and to improve the accuracy 

of the predictions 
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テクスチャ解析による海面波浪状態のニューラルネット学習

森元映治・中村誠

本研究は、沿岸海域の海面波浪状態を画像情報としてとらえ、特徴を自動的に数値化する監視システムの構築に

ついて基礎的検討を行ったものである。海面の波浪状態をテクスチャとしてとらえ、風力に応じた海面状態を特性

値に対応させ、階層型ニューラルネットワークの入力として学習させた。ネットワークは誤差逆伝播法による多層

構造型を用いた。これにより学習条件、ネットワーク構造の及ぼす影響を調べ、最適な計測条件を数値的に感度解

析した。また解析データとして最適な海域画像の設定方法についても複数の方法を比較検討した。解析には空間濃

度レベル依存法を用い、特徴量としてエネルギ一、エントロビー、相関、局所一様性、慣性の各量を用いた。

181 


