

アカエイの非貪食性顆粒球の形態学的および細胞化 学的特徴

メタデータ	言語: Japanese
	出版者:水産大学校
	公開日: 2024-10-11
	キーワード (Ja):
	キーワード (En): stingray; Dasyatis akajei;
	non-phagocytic granulocyte; morphology;
	cytochemistry
	作成者: 近藤, 昌和, 東川, 将基, 平山, 尋暉, 安本, 信哉,
	高橋, 幸則
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2012099

This work is licensed under a Creative Commons Attribution 4.0 International License.

アカエイの非貪食性顆粒球の形態学的および細胞化学的特徴

近藤昌和[†], 東川将基, 平山尋暉, 安本信哉, 高橋幸則

Morphological and Cytochemical Characteristics of Non-phagocytic Granulocytes from Whip Stingray *Dasyatis akajei*

Masakazu Kondo[†], Shouki Higashikawa, Hiroki Hirayama, Shinya Yasumoto and Yukinori Takahashi

Abstract: Three types of non-phagocytic granulocytes, basophil, eosinophil and small eosinophilic granulocyte, were observed in peripheral blood of whip stingray *Dasyatis akajei* (Dasyatidae, Myliobatiformes, Batoidea, Elasmobranchii). Basophils had four types of granules (BG) in the cytoplasm. The type A BG (BG-A) were rod-shaped and stained light blue with May-Grünwald. Other types (type B: BG-B) were round and show red (BG-Ba), violet (BG-Bb) or purple (BG-Bc). The BG-Ba were localized around nucleus. Two types of granules were observed in eosinophils. One was rod-shaped eosinophilic granules (EG-A), and other was round chromophobic (EG-B). Small eosinophilic granulocytes also had two types of granules (SEG): SEG-A, subangular to anglar in shape and eosinophilic; SEG-B, round chromophobic. All types of non-phagocytic granulocytes lacked alkaline phosphatase, β -glucuronidase and peroxidase. However, acid phosphatase (AcP) and several types of esterase were detected in those granulocytes. Both EG-A and SEG-A were hematoxylin (Mayer's) positive, but positive reaction in AcP staining preparation was different: EG-A, positive; SEG-A, negative.

Key words: stingray, Dasyatis akajei, non-phagocytic granulocyte, morphology, cytochemistry

緒言

前報において著者らはアカエイDasyatis akajei (板鰓亜 網エイ区トビエイ目アカエイ科)の好中球の形態学的特徴 を多条件下Romanowsky型染色評価法(MRSV)によって 明らかにし,これまでに報告した各種魚類と比較した¹⁾。 その結果,アカエイの好中球には既報の各種魚類の好中球 とは異なる形態学的特徴が認められた¹⁾。アカエイの血液 中には好中球以外に顆粒球として好塩基球,好酸球および 小型好酸性顆粒球が観察されるが,貪食能は好中球にのみ 認められた。本研究では好中球以外の貪食能を示さない (非貪食性)顆粒球の形態学的および細胞化学的特徴につ いて報告する。

材料および方法

アカエイ(体重約8 kg)を水温19.0±1.0℃で1週間馴致 飼育したのちに実験に供した。飼育期間中は、マダイ *Pagrus major*の切り身を適宜給餌した。キナルジンで麻酔 後, 心臓から採血した。血液塗抹標本の作製, MRSV(Table 1)および各種細胞化学染色法は前報¹⁾にしたがった。

結 果

アカエイの血液中の3種類の非貪食性顆粒球(好塩基球, 好酸球,小型好酸性顆粒球)に,アルシアンブルー,オイ ルレッドOおよびズダンIII染色では陽性所見が観察されな

水產大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

† 別刷り請求先 (corresponding author): kondom@fish-u.ac.jp

^{*}本研究の一部は,平成27年度日本魚病学会秋季大会(2015年9月25日)において報告した(309:近藤昌和,東川将基,平山尋暉,安本信 哉,高橋幸則:アカエイの非貪食性顆粒球の形態学的特徴(プログラムおよび講演要旨集,23))。

かった。また、アルカリ性フォスファターゼ (AIP), β-グ ルクロニダーゼ (β-Glu) およびペルオキシダーゼ (PO)

は検出されなかった。

Table 1. Staining conditions of multiple Romanowsky-type stain valuation

PN		Condition ^{1,2}	PN		Condition ^{1,2}
1	MG	: DW	42	G	: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 15 min
2		: 5 mM PB, pH5.0	43		: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 60 min
3		: 5 mM PB, pH6.0	44		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 15min
4		: 5 mM PB, pH7.0	45		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 60min
5		: 5 mM PB, pH8.0	46	MGG	: DW, 1:20, 15 min
6		: ¹ / ₁₅ M PB, pH5.0	47		: DW, 1:20, 60 min
7		: ¹ / ₁₅ M PB, pH6.0	48		: DW, 1:100 , 15 min
8		: ¹ / ₁₅ M PB, pH7.0	49		: DW, 1:100 , 60 min
9		: ¹ / ₁₅ M PB, pH8.0	50		: 5 mM PB, pH5.0, 1:20, 15min
10	G	: DW, 1:20, 15 min	51		: 5 mM PB, pH5.0, 1:20, 60min
11		: DW, 1:20, 60 min	52		: 5 mM PB, pH5.0, 1:100, 15 min
12		: DW, 1:100 , 15 min	53		: 5 mM PB, pH5.0, 1:100, 60 min
13		: DW, 1:100 , 60 min	54		: 5 mM PB, pH6.0, 1:20, 15min
14		: 0.5 mM PB, pH5.0, 1:20, 15min	55		: 5 mM PB, pH6.0, 1:20, 60min
15		: 0.5 mM PB, pH5.0, 1:20, 60min	56		: 5 mM PB, pH6.0, 1:100 , 15 min
16		: 0.5 mM PB, pH5.0, 1:100, 15 min	57		: 5 mM PB, pH6.0, 1:100 , 60 min
17		: 0.5 mM PB, pH5.0, 1:100, 60 min	58		: 5 mM PB, pH7.0, 1:20, 15min
18		: 0.5 mM PB, pH6.0, 1:20, 15min	59		: 5 mM PB, pH7.0, 1:20, 60min
19		: 0.5 mM PB, pH6.0, 1:20, 60min	60		: 5 mM PB, pH7.0, 1:100, 15 min
20		: 0.5 mM PB, pH6.0, 1:100 , 15 min	61		: 5 mM PB, pH7.0, 1:100, 60 min
21		: 0.5 mM PB, pH6.0, 1:100 , 60 min	62		: 5 mM PB, pH8.0, 1:20, 15min
22		: 0.5 mM PB, pH7.0, 1:20, 15min	63		: 5 mM PB, pH8.0, 1:20, 60min
23		: 0.5 mM PB, pH7.0, 1:20, 60min	64		: 5 mM PB, pH8.0, 1:100, 15 min
24		: 0.5 mM PB, pH7.0, 1:100, 15 min	65		: 5 mM PB, pH8.0, 1:100, 60 min
25		: 0.5 mM PB, pH7.0, 1:100, 60 min	66		: ¹ / ₁₅ M PB, pH5.0, 1:20, 15min
26		: 0.5 mM PB, pH8.0, 1:20, 15min	67		: ¹ / ₁₅ M PB, pH5.0, 1:20, 60min
27		: 0.5 mM PB, pH8.0, 1:20, 60min	68		: ¹ / ₁₅ M PB, pH5.0, 1:100, 15 min
28		: 0.5 mM PB, pH8.0, 1:100, 15 min	69		: ¹ / ₁₅ M PB, pH5.0, 1:100, 60 min
29		: 0.5 mM PB, pH8.0, 1:100, 60 min	70		: ¹ / ₁₅ M PB, pH6.0, 1:20, 15 min
30		: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 15 min	71		: ¹ / ₁₅ M PB, pH6.0, 1:20, 60 min
31		: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 60min	72		: ¹ / ₁₅ M PB, pH6.0, 1:100, 15 min
32		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 15 min	73		: ¹ / ₁₅ M PB, pH6.0, 1:100, 60 min
33		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 60 min	74		: ¹ / ₁₅ M PB, pH7.0, 1:20, 15min
34		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 15min	75		: ¹ / ₁₅ M PB, pH7.0, 1:20, 60min
35		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 60min	76		: ¹ / ₁₅ M PB, pH7.0, 1:100, 15 min
36		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 15 min	77		: ¹ / ₁₅ M PB, pH7.0, 1:100, 60 min
37		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 60 min	78		: ¹ / ₁₅ M PB, pH8.0, 1:20, 15 min
38		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 15 min	79		: ¹ / ₁₅ M PB, pH8.0, 1:20, 60 min
39		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 60 min	80		: ¹ / ₁₅ M PB, pH8.0, 1:100, 15min
40		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 15 min	81		: ¹ / ₁₅ M PB, pH8.0, 1:100, 60min
41		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 60 min			

¹MG, May-Grünwald stain (after fixation and staining for 5 min with MG concentrated-solution, the smear was stained again for 10 min in MG diluted (1:1) with various solution); G, Giemsa stain (after fixation with absolute methanol for 5 min, the smear was air-dried and then stained with Giemsa diluted with various solution); MGG, May-Grünwald • Giemsa stain (after staining with MG stain, the smear was stained with diluted Giemsa solution); DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

 $^2\text{Diluent}$ for Giemsa of MGG stain were DW, 0.5 mM PB or $^1\!/_{150}$ M PB.

PN, preparation number.

好塩基球

アカエイの好塩基球は長径約15.0 μ mの円形または卵円 形であり、核は偏在し、様々な形態(円形から3分葉)を 示した(Fig. 1)。核の染色質網は荒く、粗大な濃縮染色質 が観察された。好塩基球の顆粒(basophil granule, BG) は形状の違いから、桿状(長径1.5 μ m以下,短径0.5 μ m以 下)のA型(BG-A)と、円形または卵円形(長径0.6 μ m 以下)のB型(BG-B)の2種類に大別された。また、BG-B は多条件下Romanowsky型染色特性(Multiple Romanowsky-type Stain Characteristics, MRSC)の違い から3種類(a型, BG-Ba; b型, BG-Bb; c型, BG-Bc)に分類 された (Table 2)。BG-Aは細胞質に豊富に存在し, $\frac{1}{15}$ M リン酸緩衝液を用いたMay-Grünwald (MG) 染色によっ て淡青色を示したが (Fig. 1A), 他の染色条件では難染性 であった。BG-BaはpH8.0の5 mMリン酸緩衝液および pH5.0~8.00^{1/}15 Mリン酸緩衝液を用いたMG染色によって 赤色を呈した。また, 一部の条件ではGiemsa染色やMG-Giemsa (MGG) 染色によっても赤色に染色された。本顆 粒は核の周囲に少数局在していた (Fig. 1A)。BG-Bbは青 紫色を呈する顆粒であり, 細胞質に少数散在していた (Fig. 1B)。本顆粒は多くの条件のMG, Giemsaおよび MGG染色標本で認められた。BG-Bcは赤紫色を示す顆粒

Fig. 1. Basophils of whip stingray Dasyatis akajei. A, May-Grünwald (PN=9; small arrowheads, BG-A; large arrowheads, BG-Ba); B, May-Grünwald · Giemsa (PN=63; small arrowheads, BG-Bb; large arrowheads, BG-Bc); C, periodic acid Schiff reaction; D, toluidine blue in distilled water; E, Sudan black B; F, acid phosphatase; G, α-naphtyl acetate esterase; H, α-naphtyl butyrate esterase; I, naphthol AS-D chloroacetate esterase. PN, preparation number (See Table 1). Bars=5 µm.

Fig. 2. Eosinophils of whip stingray *Dasyatis akajei*. A. May-Grünwald · Giemsa (PN=63; small arrowheads, EG-A; large arrowheads, EG-B); B, periodic acid Schiff reaction; C, toluidine blue in distilled water; D, Sudan black B; E, acid phosphatase; F, α-naphtyl acetate esterase; G, α-naphtyl butyrate esterase; H & I, naphthol AS-D chloroacetate esterase (H, with counter stain (Mayer's hematoxylin); I, without counter stain). The EG-A was stained with hematoxylin (D-H). PN, preparation number (See Table 1). Bars=5 µm.

PN -	Type and number of BG					
	BG-A	BG-Ba	BG-Bb	BG-Bc		
1-4	_	-	+	++		
5	_	+	_			
6-9	++	+	-	-		
10-43	-	_	+	++		
44, 45	_	+		_		
46-64		_	+	++		
65	_	+	+	++		
66-81	—		+	++		

Table 2. Summary of multiple Romanowsky-type staining
characteristics of four types of basophil granules
(BG) in whip stingray *Dasyatis akajei*

PN, preparation number (See Table 1); BG-A, type A (rod-shaped light blue granule); BG-B, type B (round granule); BG-Ba, red; BG-Bb, violet; BG-Bc purple; ++, many; +, some; -, not observed.

Fig. 3. Small eosinophilic granulocytes of whip stingray Dasyatis akajei. A, May-Grünwald · Giemsa (PN=63; small arrowheads, SEG-A; large arrowheads, SEG-B); B, periodic acid Schiff reaction; C, toluidine blue in distilled water; D, Sudan black B; E, acid phosphatase; F, α -naphtyl acetate esterase; G, α -naphtyl butyrate esterase; H & I, naphthol AS-D chloroacetate esterase (H, with counter stain (Mayer's hematoxylin); I, without counter stain). The SEG-A was stained with hematoxylin (D, F-H) except for E. PN, preparation number (See Table 1). Bars=5 µm.

Table 3.	Summary	of reactions of	f whip	stingray	Dasyatis akajei	granulocytes t	o cytochemical	tests
----------	---------	-----------------	--------	----------	-----------------	----------------	----------------	-------

- 1	Positive site (shape, number and positive site) ²						
Test'	Neutrophil*	Basophil	Eosinophil	Small eosinophilic granulocyte			
PAS	G (r or o, many); H	G (r or o, many); H	G (r or o, some); H	G (r or o, a few); H			
PAS-aA		-	—				
AB (pH1.0)	=	—	—	—			
AB (pH2.5)	-	-	-	-			
TB	G (amorphous, a few, eq YB); N	G (r or o, purple, many, eq BG-Bc); N	G (r or o, many, eq EG-B); N	G (r or o, a few); N			
SBB	G (r or o, many, eq core of BG-B)	G (r or o, some, eq BG-B)	G (r or o, many, eq EG-B)	G (r or o, a few)			
Sudan III		_	—	_			
Oil red O	-	—	-	_			
AlP	_	· _	-				
AcP	G (r or o, many, eq core of βG-B)	G (r or o, many, eq BG-B)	G (r or o, many, eq EG-B)	G (r or o, some, eq SEG-B)			
β-Glu	—	—	_	—			
α-NAE	G (r or o, many, eq core of βG-B)	G (r or o, many, eq BG-B)	G (r or o, many, eq EG-B)	G (r or o, some eq SEG-B)			
α-NBE	G (r or o, many, eq surrounding of core of BG-B)	G (r or o, some, eq BG-B)	G (r or o, some, eq EG-B)	G (r or o, some eq SEG-B)			
NASDCAE	G (r or o, many, eq core of βG-B)	G (r or o, many, eq BG-B)	G (r or o, many, eq EG-B)	G (r or o, some eq SEG-B)			
Peroxidase	_			_			

¹PAS, periodic acid Schiff reaction; PAS-αA, PAS after digestion with α-amylase; AB, alcian blue; TB, toluidine blue in distilled water; SBB, Sudan black B; AIP, alkaline phosphatase; AcP, acid phosphatase; β-Glu, β-glucuronidase; α-NAE, α-naphtyl acetate esterase; α-NBE, α-naphtyl butyrate esterase; NASDCAE, naphthol AS-D chloroacetate esterase.

²G, granular; H, hyaloplasm; N, nucleus; —, not detected; r, round; ο, oval; βG-B, neutrophil granule type B (chromophobic); BG-B, basophil granule type B; BG-Bc, BG-B type c (purple); EG-B, eosinophil granule type B (chromophobic); SEG-B, type B granule of small eosinophilic granulocyte (chromophobic); Yb, Yasumoto body; eq, equivalent to.. *Kondo et al.1).

199

であり、細胞質に多数観察された(Fig. 1B)。BG-Bcが染 色される条件はBG-Bbと同じであった。

periodic acid Schiff (PAS) 反応によって多数の陽性顆 粒が観察され,細胞質基質も陽性であったが, α -アミラー ゼ消化によって陽性反応は顆粒,細胞質ともに完全に消失 した (Fig. 1C; Table 3)。トルイジンブルー (TB) 染色 によって多数の,ズダン黒B (SBB) 染色では少数の陽性 顆粒が認められた (Figs. 1D, 1E)。TB陽性顆粒は円形ま たは卵円形であり,赤紫色を呈した。酸性フォスファター ゼ (AcP) および各種エステラーゼ (α -ナフチルアセテー トエステラーゼ, α -NAE; α -ナフチルブチレートエステ ラーゼ, α -NBE; ナフトールAS-Dクロロアセテートエステ ラーゼ, NASDCAE) 活性が円形または卵円形の顆粒状に 検出された (Figs. 1F-1I)。

好 酸 球

好酸球は長径約18.0 μ mの円形または卵円形であり,核 は偏在し,様々な形態(円形から3分葉)を示した。核の 染色質網は荒く,粗大な濃縮染色質が観察された。好酸球 には2種類の顆粒(eosinophil granule, EG)が認められた (A型, EG-A; B型, EG-B; Fig. 2A)。両顆粒はいずれの条件 のRomanowsky型染色標本においても観察された。EG-A は卵円形または桿状であり(長径2.0 μ m以下,短径0.5 μ m 以下),好酸性を示した。また,顆粒の中央部の染色性は 外縁部に比べて弱かった。EG-Bは円形または卵円形であ り(長径0.5 μ m以下),いずれの染色条件においても明瞭 な染色性を示さず難染性であった。

PAS反応によって少数の陽性顆粒が観察され、細胞質基 質も弱陽性であったが、 α -アミラーゼ消化によっていず れの部位においても陽性反応は消失した(Fig. 2B; Table 3)。TB染色とSBB染色では多数の弱陽性顆粒が認められ た(Figs. 2C, 2D)。本陽性顆粒は円形または卵円形であっ た。TB陽性顆粒は淡青色を呈した。AcPおよび各種エス テラーゼ(α -NAE, α -NBE, NASDCAE)活性が円形また は卵円形の顆粒状に観察されたが(Figs. 2E-2I), AcP, α -NAEおよびNASDCAE陽性顆粒は多く、 α -NBE陽性顆 粒は少なかった。SBB, AcP, β -Gluおよび各種エステラー ゼ染色後の核染色(マイヤーのヘマトキシリン染色)に よって大型の卵円形または桿状顆粒が青染した(Figs. 2D-2H)。しかし、PASおよびPO染色後のそれには染まらな かった。

小型好酸性顆粒球

本顆粒球 (small eosinophilic granulocyte, SE) は長径 約13.0 μ mの卵円形または紡錘形であり,核は偏在し,通 常円形から卵円形,まれに分葉 (2分葉)を示した。核の 染色質網は荒く,粗大な濃縮染色質が観察された (Fig. 3)。細胞質には2種類の顆粒 (SE granule, SEG) が認めら れた (A型, SEG-A; B型, SEG-B)。両顆粒はいずれの条件 のRomanowsky型染色標本においても観察された。SEG-A は角が明瞭でない多角形 (四角形から六角形)または卵円 形の顆粒であり (長径1.5 μ m以下,短径1.0 μ m以下),い ずれの染色条件においても好酸性を示した。また,顆粒の 中央部と外縁部に染色性の違いは認められなかった。 SEG-Bは円形または卵円形であり (長径0.5 μ m以下),い ずれの染色条件においても明瞭な染色性を示さず難染性で あった (Fig. 3A)。

PAS反応によって少数の陽性顆粒が観察され、細胞質基 質も弱陽性であったが、α-アミラーゼ消化によっていず れの部位においても陽性反応は消失した(Fig. 3B; Table 3)。TB染色とSBB染色では少数の弱陽性顆粒が認められ た(Figs. 3C, 3D)。本陽性顆粒は円形または卵円形であっ た。TB陽性顆粒は淡青色を呈した。AcPおよび各種エス テラーゼ活性が円形または卵円形の顆粒状に少数観察され た(Figs. 3E-3I)。SBBおよび各種エステラーゼ染色後の 核染色によって大型の卵円形または多角形顆粒が青染した (Figs. 1D, 3F-3H)。しかし、PAS、AcP、β-GluおよびPO 染色後のそれには染まらなかった(Fig. 3E)。

考 察

アカエイには3種類の非貪食性顆粒球が認められた。好 塩基球の4種類の顆粒は染色性が異なることから,それぞ れ違う種類の顆粒と考えられる。各種酵素活性が小型の円 形陽性顆粒として検出されることから,それら酵素は好塩 基球のBG-Bに存在すると思われる。また,TB陽性顆粒と SBB陽性顆粒もBG-Bに相当すると推察されるが,TB陽性 顆粒は異調染色性を示し,赤紫色を呈した。このことから, TB陽 性顆粒 はRomanowsky型染色で赤紫色を呈する BG-Bcに相当すると言える。これまでに,アミアAmia calvaとコノシロKonoshirus punctatusにも好塩基球が観察さ れているが²³⁾,アミアでは青紫色を呈する1種類の顆粒が 存在し,この顆粒はPAS陽性,TBで淡青色を呈する。また, AcPとβ-Gluが微細顆粒状に検出されるが,各種エステラー ゼ活性は認められていない。一方,コノシロの好塩基球に は3種類の顆粒が存在し,大型のA顆粒は赤紫色を,小型 のB顆粒とC顆粒はそれぞれ赤紫色および淡青色を呈する とされている。また,AcPとβ-Gluが微細顆粒状に検出さ れるとともに,各種エステラーゼ染色にも陽性を示す。

アカエイの好酸球には2種類の顆粒が認められた。好酸 性で大型のEG-Aでは、顆粒の中心部の染色性が弱いこと から芯構造を有し、その芯は難染性であると推察される。 TB陽性顆粒,SBB陽性顆粒および各種酵素活性陽性顆粒 はいずれも小型で円形または卵円形であることから、 難染 性のEG-Bに相当すると思われる。EG-Aには本研究で検討 した各種細胞化学染色に対して陽性反応を示さなかった が、SBB染色と、POを除く各種酵素染色における核染色 (マイヤーのヘマトキシリン染色)によって青染した。ア カエイ好中球のβG-Aの好酸性を示す芯も、ヘマトキシリ ンによって青染されるが、AcP染色標本では染色されない。 アミアの好酸球には、好酸性の大型顆粒と好塩基性の小型 顆粒が観察されており、両顆粒にPO活性が検出され、小 型顆粒はPASおよびTB陽性である²⁾。また, AcPとβ-Glu が微細顆粒状に検出されるが、エステラーゼ活性は認めら れていない²⁾。シベリアチョウザメAcipenser baeriiにも好 酸球が同定されており⁴⁾,細胞質には大小2種類の好酸性 顆粒が認められAcPが大型顆粒に局在する。また. β-Glu や各種エステラーゼ活性も顆粒状に検出されるが、POは 陰性である。マハタEpinephelus septemfasciatusには顆粒の 形状が異なる2種類の好酸球が存在するが、顆粒はそれぞ れ1種類と報告されている⁵⁾。アミラーゼに消化されない PAS陽性顆粒とともに、TB陽性顆粒とSBB陽性顆粒も認 められ, AcP, β-Glu, α-NAEおよびα-NBE活性が検出 されているが、NASDCAEとPOは陰性である。また、マ ハタの好酸球は貪食を示す⁵⁾。

アカエイの血液中には小型好酸性顆粒球が観察された。 この顆粒球はアカエイの好酸球に類似し,好酸性顆粒と難 染性顆粒を有していた。また,各種細胞化学特性も類似し ていた。しかし,好酸性顆粒の形状が両顆粒球で異なる。 また,小型好酸性顆粒球の好酸性顆粒には,好酸球の好酸 性顆粒で認められる顆粒中央における染色性の低下は見ら れなかった。さらに,好酸球の好酸性顆粒はAcP染色後の ヘマトキシリン染色によって青染されるが,小型好酸性顆 粒球では染色されなかった。以上のことから、好酸球と小 型好酸性顆粒球は異なる顆粒球であると解釈した。小型好 酸性顆粒球の好酸性顆粒のヘマトキシリン染色性はアカエ イ好中球のβG-Aの好酸性を示す芯と同様であった。小型 好酸性顆粒球の存在は、コノシロとシベリアチョウザメで も報告されているが³⁴⁾、前者には3種類の、後者には1種類 の顆粒が認められている。

Hine and Wain (1987) はアカエイの近縁種*D. brevicaudatus* を含む複数種のエイ類の顆粒球をeosinophil, eosinophilic granulocyteおよびneutrophilic granulocyteの3種類に分類 しているが⁶⁾, これらはアカエイの好酸球,好中球および 好塩基球に相当すると思われる。同じ著者による板鰓類の 顆粒球の細胞化学による報告では,エイ類の種間で相違が あるものの,いずれの顆粒球もβ-Gluは陰性である⁷⁾。

文 献

- 近藤昌和,東川将基,平山尋暉,安本信哉,高橋幸則: アカエイの好中球の形態学的および細胞化学的特徴. 水大校研報,65,189-194 (2017)
- 2)近藤昌和,安本信哉,高橋幸則:アミアの顆粒球の形 態学的および細胞化学的特徴.水大校研報,64,196-203 (2016)
- 3)近藤昌和,仲下 亮,安本信哉,高橋幸則:コノシロの顆粒球の形態学的および細胞化学的特徴.水大校研報,63,250-260 (2015)
- 4)近藤昌和,酒井麻帆,安本信哉,高橋幸則:シベリア チョウザメの顆粒球の形態学的および細胞化学的特 徴.水大校研報, 63, 262-270 (2015)
- 5)近藤昌和,近藤啓太,高橋幸則:マハタ白血球の形態
 学的および細胞化学的特徴.水産増殖,58,363-371
 (2010)
- 6) Hine PM, Wain JM: Composition and ultrastructure of elasmobranch granulocytes. II. Rays (Rajiformes). *J Fish Biol*, 30, 557-565 (1987)
- 7) Hine PM, Wain JM: The enzyme cytochemistry and composition of elasmobranch granulocytes. *J Fish Biol*, 30, 465-475 (1987)