マダイ瀬戸内海東部 2.海洋環境と生態系への配慮

メタデータ	言語: Japanese
	出版者: 水産研究・教育機構
	公開日: 2025-03-19
	キーワード (Ja):
	キーワード (En):
	作成者: 竹茂, 愛吾, 小畑, 泰弘, 岸田, 達
	メールアドレス:
	所属:
URL	https://fra.repo.nii.ac.jp/records/2013893

2. 海洋環境と生態系への配慮

概要

生態系情報・モニタリング(2.1)

瀬戸内海においてマダイを漁獲する漁業による生態系への影響の把握に必要となる情報、モニタリングの有無については、古くから盛んな漁業・養殖業を支えるため、各府県の水産試験研究機関、及び水産研究・教育機構(以下、水産機構)が長年に亘り海洋環境、プランクトン等に関する調査を行い、評価対象種であるマダイの生態・漁業についても調査・研究が行われ、知見は多い(2.1.1 4点)。海洋環境及び漁業資源に関する調査が水産機構の調査船によって毎年実施されている(2.1.2 4点)。行政機関により県別・漁業種類別・魚種別漁獲量等は調査され公表されているが、混獲や漁獲物組成に関する情報は十分得られていない(2.1.3 3点)。

同時漁獲種への影響(2.2)

評価対象種を漁獲する漁業による他魚種への影響として、小型底びき網漁業(以下、小底)による混獲利用種については、かれい類、えび類、いか類、たこ類、タチウオとしたが、いずれの種(類)も漁獲量は長期的に見て減少傾向を示している。吾智網ではクロダイ・ヘダイ、スズキとしたが、長期的に見てクロダイ・ヘダイの漁獲量は横ばい、スズキは減少傾向を示していた。小型定置網の混獲種は多様度が高いと考えられるが、漁獲量が多いマアジ、ブリ、スズキとしたとき、マアジ、スズキの資源状態が懸念される、もしくは減少傾向にあった(2.2.1 小底2点、吾智網3点、小型定置網2点、総合評価2点)。混獲非利用種として、小底はヒメガザミ、ヘイケガニ、イヨスダレガイ、オカメブンブクとしたが、PSA評価では総合的なリスクは中程度であった。吾智網では小型の生物は漁獲されにくいと考えた。小型定置網では詳細は不明であった(2.2.2 小底3点、吾智網4点、小型定置網1点、総合評価3点)。希少種への影響については、アカウミガメに中程度の懸念が認められたが、全体としては低かった(2.2.3 4点)。

海洋環境・生態系への影響(2.3)

食物網を通じたマダイ漁獲の間接影響については、マダイの捕食者をヒラメ、あなご類、 えそ類、アイナメとした。あなご類は減少傾向であったが、被食者であるマダイが横ばい、 ないし増加傾向であるため餌不足(マダイ漁獲の影響)が原因とは考えられない。えそ類、ア イナメなど、ほかの捕食者の豊度に関する情報はないが、やはり被食者であるマダイが横ば い、ないし増加傾向であることからマダイの漁獲による餌不足が起きている懸念はないと考 えられる(2.3.1.1 4点)。瀬戸内海における未成魚期、成魚期マダイの餌生物は、あみ類が 最も多く、ほかに海藻、短尾類、多毛類、貝類等である。これら小型無脊椎動物、植物の豊度 に関するデータは得られていないが、マダイの漁獲量は安定しているため、餌生物への捕食 圧が定向的に大きく変化していることは考えにくい(2.3.1.2 4点)。マダイの競争者と考え られるのは、小型甲殻類、ベントス食性を持つかれい類と考えられる。かれい類は長期的に 見ると減少傾向であるが、マダイは横ばい、ないし増加傾向を保っており両者の漁獲量には 有意な負の相関がみられた。このことは、マダイの増加が、餌を巡る競争を通じてかれい類 減少原因のひとつとなる可能性があることを示している(2.3.1.3 2点)。

漁業による生態系全体への影響については、総漁獲量及び漁獲物平均栄養段階(MTLc)の低下が認められ、評価対象漁法のみが要因とは考えがたいが、幅広い魚種の漁獲量の低下がMTLcの低下を招いていることから生態系全体に及ぼす影響が懸念された(2.3.2 2点)。海底環境への影響については MTLc の変化幅は小さく、懸念は認められなかった(2.3.4 4点)。水質環境への負荷は軽微であると判断される(2.3.5 4点)。大気環境への影響については、中程度であると判断した(2.3.6 3点)。

評価範囲

① 評価対象漁業の特定

山本・石田(2020)によれば、2018年のマダイ瀬戸内海東部系群に対する漁獲量は2,388トンであるが、漁業種類別にみると小底1,233トン(52%)、吾智網371トン(16%)、小型定置網327トン(14%)で、以上3漁法で75%を上回る。よって、評価対象漁業は小底、吾智網、小型定置網とする。

- ② 評価対象海域の特定
 - 本系群の分布域である瀬戸内海東部(紀伊水道、大阪湾、播磨灘、備讃瀬戸)とする。
- ③ 評価対象漁業と生態系に関する情報の集約と記述
- 1) 漁具、漁法
- ・小底:瀬戸内海は手繰1種、2種、3種及び板びきの4漁法がある(東海 1993)。手繰1種は網口開口装置を有しない"かけまわし"、手繰2種、3種、板びきは開口装置としてビーム、桁及びオッターボードを有する(東海 1993)。
- ・吾智網:山口県(瀬戸内海周防灘)の例では、楕円形の網地が縮結によって袋状となった網の両側に630mの曳綱を付けたものを用い、潮流を受けるように網を張った後ローラーで曳綱を巻き上げる(金田 2005)。
- ・小型定置網:海岸と直角に張った垣網で沖の身網部に魚を誘導し漁獲する設置性の漁具である。小型定置網は身網部の水深が27m以浅である。

2) 船サイズ、操業隻数、総努力量

・小底:漁業法 66条3項による瀬戸内海での小底の隻数とサイズは表のように制限されており、船のサイズはほとんど5トン未満となっている。

府県名	隻数の最高限度	うち5~10トン	うち10~13.5トン	13.5トン以上
大阪	240	193	0	0
兵庫	2,255	5	0	0
和歌山	295	67	131	0
岡山	1,350	0	0	0
徳島	632	157	69	0
香川	1,638	2	0	0

瀬戸内海東部 6 府県における小底経営体数は 2018 年漁業センサスによれば和歌山県 163、大阪府 141、兵庫県 924、岡山県 251、香川県 473、徳島県 146、合計 2,098 である (農林水産省 2020; ただし 2 つの大海区を有する県の数値は県の HP による)。1 経営体当たりの出漁日数は兵庫県の場合年間 $140\sim170$ 日である (兵庫県 2006)。

- ・吾智網:使用漁船は3~5トン(金田 2005)。操業隻数は不明。
- ・小型定置網:経営体数は和歌山県 6、大阪府 11、兵庫県 53、岡山県 58、香川県 69、徳島県 21、合計 218 である(農林水産省 2020; ただし 2 つの大海区を有する県の数値は県の HP による)。

3) 主要魚種の年間漁獲量

2018 年農林水産統計(農林水産省 2019)による、瀬戸内海東部海域に相当する府県の漁獲量上位魚種は以下に示すとおりである。ただし、中・西部海域との境界の香川県、岡山県は東部に含めた。

魚種名	和歌山	大阪	兵庫	徳島	香川	岡山	合計	率(%)
シラス	1,209	2,730	9,032	1,858	899	336	16,064	23.5
カタクチイワシ	6	550	1,603	835	11,464	0	14,458	21.1
イカナゴ	0	173	1,507	19	819	105	2,623	3.8
マダイ	195	35	1,280	214	446	263	2,433	3.6
かれい類	17	189	1,193	58	473	175	2,105	3.1
たこ類	33	61	1,032	96	636	212	2,070	3.0
その他えび類	65	112	702	177	489	222	1,767	2.6
その他いか類	164	77	770	350	185	83	1,629	2.4
漁獲量合計	5,882	8,361	25,758	6,378	18,915	3,162	68,456	

4) 操業範囲:大海区、水深範囲

- •大海区:瀬戸内海東部(紀伊水道、大阪湾、播磨灘、備讃瀬戸)
- ・水深範囲:瀬戸内海東部の平均水深は大阪湾 30m、播磨灘 26m、備讃瀬戸 16m 等である(環境省 2017)。

5) 操業の時空間分布

・小底と小型定置網の操業時期については、詳細は不明である。吾智網の漁期は山口県(周防灘)では4~6月である(金田 2005)。

6) 同時漁獲種

• 混獲利用種

○小底:兵庫県における 1985~2004 年の小底による魚種別漁獲量で上位に来るのはたこ類、 えび類、ひらめ・かれい類、いか類、スズキ、マダイ、あなご類、しゃこ類等である(兵庫県 2006)。これらの種について、2018 年の農林水産統計の瀬戸内海東部(和歌山県、大阪府、兵庫 県、徳島県、香川県、岡山県とする)の小底による漁獲量は以下のとおりである。

魚種名	和歌山	大阪	兵庫	徳島	香川	岡山	合計	率(%)
かれい類	13	175	1,029	51	385	150	1,803	10.9
えび類	57	112	701	177	186	217	1,450	8.8
いか類	150	69	725	340	106	55	1,445	8.7
マダイ	143	64	668	79	177	111	1,242	7.5
たこ類	5	25	587	27	295	65	1,004	6.1
タチウオ	520	21	157	131	4	1	834	5.0
クロダイ・ヘダイ	31	85	219	22	109	69	535	3.2
スズキ	12	40	339	24	45	34	494	3.0
総計	2,277	980	7,196	1,719	2,645	1,740	16,557	100

なお、えび類について、小底の中で最も漁獲量が多い手繰り2種(エビ漕ぎ網)ではサルエビ、アカエビ、トラエビ等の小型えび類からなる(東海 1993)。かれい類で漁獲量が多いのはメイタガレイ、マコガレイである(兵庫県 2006)。たこ類は8割がマダコ(兵庫県 2017)、いか類はコウイカ科、ベイカ等であるが(松村・福田 1981)、種組成は不明である。瀬戸内海における手繰り2種ではシャコも漁獲量が多いとされるが(東海 1993)、シャコは農林水産統計ではその他の水産動物類にまとめられており漁獲統計には出てこない。

○吾智網:吾智網は農林水産統計では船びき網に入っているが、船びき網の中でもパッチ網の漁獲と考えられる浮魚類、及びイカナゴを除外した 2018 年の以下の県の魚種別漁獲量(単位トン)及び総計は以下のとおりである(農林水産省 2019)。以下の表では、船びき網でマダイの漁獲がない和歌山県、大阪府、徳島県は除いた。

魚種名	兵庫	香川	岡山	合計	率(%)
マダイ	347	32	13	392	84.3
クロダイ・ヘダイ	9	24	4	37	8.0
スズキ	9	27		36	7.7
合計	365	83	17	465	

クロダイ・ヘダイ、並びにスズキは混獲利用種と考えられる。

〇小型定置網:瀬戸内海東部 6 府県の府県別魚種別漁獲量で上位に来る種は以下のとおりである。ただし、これまで同様、香川県、岡山県は東部に含めた。

魚種名	和歌山	大阪	兵庫	徳島	香川	岡山	合計	率(%)
マダイ	4	1	87	96	114	69	371	15.6
マアジ	14	38	166	58	57	2	335	14.1
ブリ	34	5	64	84	51	24	262	11.0
スズキ	2	2	38	28	42	28	140	5.9
府県の総計	109	70	652	621	650	274	2,376	

小型定置網の場合は、いわゆる浮魚類も底魚類も漁獲対象となる。第 1 位のマダイでも全体 の 15.6%にすぎず漁獲種の多様性が高いことが窺えるが、総漁獲量の 5%以上を占めるマア ジ、ブリ、スズキを混獲利用種とする。

• 混獲非利用種

○小底:小底については、上記混獲利用種の幼魚が混獲投棄されることが問題とされるが(東海 1993)、混獲利用種以外では、岡山県の 1993 年 10 月~1994 年 1 月の石桁漕網試験操業の結果で以下のとおり多様な生物が混獲されている(唐川 1998)。

	種名	個体数	率 (%)
魚類	タマガンゾウビラメ	142	0.6
	アカハゼ	143	0.6
	シログチ	99	0.4
長尾類	サルエビ	1,561	6.7
	テナガテッポウ	712	3.0
	シバエビ	298	1.3
	トラエビ	230	1.0
短尾類	ヒメガザミ	2,719	11.6
	ヘイケガニ	2,879	12.3
	フタホシイシガニ	757	3.2
	マルバガニ	442	1.9
	イシガニ	292	1.2
軟体類	イヨスダレガイ	4,704	20.1
	ウミフクロウ	327	1.4
その他(99%棘皮動物)	優占種:オカメブンブク	6,927	29.6
全類の合計		23,393	

このうち、総漁獲個体数の5%を超えるものを評価対象とすると、サルエビは混獲利用種のえび類に入っているため、ヒメガザミ、ヘイケガニ、イヨスダレガイ、棘皮動物のなかで優占種であるオカメブンブクとなる。

○吾智網:吾智網では混獲種は少ないことから、非利用種についてもなしとした。

○小型定置網:小型定置網は、上記「混獲利用種」で示したごとく、1位のマダイから4位の

スズキで総漁獲量の 46.6%であり、残り半分以上は総漁獲量の 5%以下か、漁獲統計上その 他魚類等に含まれてしまう種であることから、詳細は不明である。

7) 希少種

環境省レッドデータブックを根拠とした。環境省による 2020 年レッドデータブック掲載種の中で、生息環境が瀬戸内海区と重複する動物は以下のとおりである(環境省 2020a)。

爬虫類 アカウミガメ(EN)

鳥類 ヒメクロウミツバメ(VU)、コアジサシ(VU)、カンムリウミスズメ(VU)、ヒメウ(EN)

2.1 操業域の環境・生態系情報、科学調査、モニタリング

2.1.1 海洋環境や生態系に与える影響を評価するために必要な基盤情報の蓄積

瀬戸内海は本州、四国及び九州によって囲まれた半閉鎖水域で沿岸域の人口が多いため古くより漁業が盛んでマダイ等の養殖業発祥の地でもある。これら漁業、養殖業を支えるため東部海域においては各府県に設置された水産試験研究機関、及び水産機構が長年に亘り海洋環境、プランクトン等の低次生産生物に関する調査を行い、知見を蓄積している。評価対象種であるマダイの生態・漁業についても瀬戸内海全体で見ると知見は多い(農林水産技術会議事務局 1980, 山本・石田 2020)。このため4点とする。

1点	2点	3点	4点	5点
利用できる情		部分的だが利用で	リスクベース評	現場観測による時系列データや生
報はない		きる情報がある	価を実施できる	態系モデルに基づく評価を実施で
			情報がある	きるだけの情報が揃っている

2.1.2 海洋環境や生態系に関する科学調査の実施

瀬戸内海海域では海洋環境及び漁業資源に関する調査が水産機構の調査船によって毎年実施されている。その規模は平成26年度では、海洋環境、魚類資源に関するものだけで8航海(延べ44日)実施された(水産研究・教育機構・瀬戸内海区水産研究所2020)。また当該海域を擁する関係府県の水産試験研究機関はそれぞれ調査船を有しており、原則月1回の海洋観測を初めプランクトン、漁業資源等に関する調査を実施している。したがって4点とする。

1点	2点	3点	4点	5点
科学調査は実施さ		海洋環境や生態系	海洋環境や生態系	海洋環境モニタリン
れていない		について部分的・	に関する一通りの	グや生態系モデリン
		不定期的に調査が	調査が定期的に実	グに応用可能な調査
		実施されている	施されている	が継続されている

2.1.3 漁業活動を通じた海洋環境・生態系のモニタリング

行政機関により県別・漁業種類別・魚種別漁獲量等は調査され公表されている(農林水産省2019)。しかしこれだけでは混獲や漁獲物組成に関する情報は十分には得られていないため3点とする。

1点	2点	3点	4点	5点
漁業活動から		混獲や漁獲物組成等に	混獲や漁獲物組成等	漁業を通じて海洋環境や生
情報は収集さ		ついて部分的な情報を	に関して代表性のあ	態系の状態をモニタリング
れていない		収集可能である	る一通りの情報を収	できる体制があり、順応的
			集可能である	管理に応用可能である

2.2 同時漁獲種への影響

2.2.1 混獲利用種への影響

- ・小底
- ③ 6)に示したとおり農林統計で漁獲量が総漁獲量の5%を超えたかれい類、えび類、いか類、たこ類、タチウオを混獲利用種とし、CA評価を行った。類で括られる群は種組成は不明であるが、組成が年々大きく変動することはないであろうと考えて、そのまま漁獲統計の数値を用いた。

評価対象漁業	小底				
評価対象海域	瀬戸内海東部海域				
評価対象魚種	かれい類、えび類、いか類、たこ類、タチウオ				
評価項目番号	2. 2. 1				
評価項目	混獲利用種への影響				
пшкр	資源量 2				
	再生產能力				
評価対象要素	年齢・サイズ組成				
HT IMP 13/3/2/IV	分布域				
	その他:				
評価根拠概要	いずれの種(類)も漁獲量の減少傾向が見られるため2点とする。				
評価根拠	瀬戸内海及び周辺海域のタチウオについては県ごとの資源評価が行われており、結果は以下のとおりである。 ・タチウオ(和歌山県海域、徳島県海域):瀬戸内海が外海と繋がる東西の水道部(紀伊水道・紀伊水道外海、伊予灘・豊後水道)での漁業が盛んであるが、東部の和歌山県、徳島県はともに資源水準は低位、動向は減少とされる(和歌山県水産試験場ほか 2020)。かれい類、たこ類(いずれも種組成は不明)については、瀬戸内海東部6府県(和歌山県瀬戸内海区分、大阪府、兵庫県、岡山県、香川県、徳島県瀬戸内海区分)の漁獲量を用いた(農林水産省 2019)。以上4類の漁獲量及びタチウオ漁獲量を図2.2.1aに示す。 18 16 14 12 10 18 16 17 18 18 16 16 14 12 10 10 11 18 18 16 16 14 12 10 10 11 18 18 16 16 14 12 10 10 11 18 10 11 18 10 11 18 10 11 18 10 11 11 11 11 11 11 11 11 11 11 11 11				

• 吾智網

③ 6)に示したとおり吾智網の混獲利用種ではないかと考えられるクロダイ・ヘダイ、スズキを混獲利用種とし、CA評価を行った。

評価対象漁業	吾智網				
評価対象海域	瀬戸内海東部海域				
評価対象魚種	クロダイ・ヘダイ、スズキ				
評価項目番号	2. 2. 1				
評価項目	混獲利用種への影響				
	資源量	3			
	再生産能力				
評価対象要素	年齢・サイズ組成				
	分布域				
	その他:				
評価根拠概要	スズキ漁獲量の減少傾向が見られ	· るため3点とする。			
評価根拠	の漁獲量(農林水産省 2019)を図2 4 3 (ハイナ) 4 2 ■ 2003 図2. 2. 1b 瀬戸内海東部海域 図2. 2. 1bに示すとおり、長期的に	→ クロダイ・ヘダイ → スズキ 2013 2018			

• 小型定置網

③ 6)に示したとおり小型定置網の混獲種は多様度が高いと考えられるが、漁獲量が小型定置網の総漁獲量の5%を超える種であるマアジ、ブリ、スズキを混獲利用種として CA 評価を行った。

評価対象漁業	小型定置網			
評価対象海域	瀬戸内海東部海域			
評価対象魚種	マアジ、ブリ、スズ	`+		
評価項目番号	2. 2. 1			
評価項目	混獲利用種への影響	}		
	資源量	2		
	再生産能力			
評価対象要素	年齢・サイズ組成			
	分布域			
	その他:			
評価根拠概要	いずれの種(類)も漁	獲量の減少傾向が見ら	れるため2点とする。	
評価根拠	・ママ 2018年の では 2018年の では 2018年の では 2019 では 2003 では 2019 では 20	: は、 は で で で で で で で で は 、 で で で で は 、 で で で で	F以降の定置網の漁獲量 F間(2014~2018 年)の 獲圧が続いた場合、親知 P洋南区分は含まず)、 分は含まず))の漁獲量 ブリの同海域での漁獲量 マアジ ブリ ブリー	所の結果から 続いた場合、5年 なから2018年の資 漁量は減少傾向 大農林示す。 一スズキ 2018 ないた。 2018

以上のとおり、小底 2 点、吾智網 3 点、小型定置網 2 点であることから、漁獲量による重み付け平均値 (2.2) より本項目は 2 点とする。

1点	2点	3点	4点	5点
評価を実	混獲利用種の中に	混獲利用種の中に混獲によ	混獲利用種の中	個別資源評価に基
施できな	資源状態が悪い種	る資源への悪影響が懸念さ	に資源状態が悪	づき、混獲利用種
V	もしくは混獲によ	れる種が少数含まれる。CA	い種もしくは混	の資源状態は良好
	る悪影響のリスク	やPSAにおいて悪影響のリ	獲による悪影響	であり、混獲利用
	が懸念される種が	スクは総合的に低いが、悪	のリスクが懸念	種は不可逆的な悪
	多く含まれる	影響が懸念される種が少数	される種が含ま	影響を受けていな
		含まれる	れない	いと判断される

2.2.2 混獲非利用種への影響

• 小底

上記③ 6) に示した如く、ヒメガザミ、ヘイケガニ、イヨスダレガイ、オカメブンブクを混獲非利用種とする。これらの種は CA 評価を行うための豊度に関する時系列データが得られないため PSA 評価を行った。

表2.2.2a 混獲非利用種のPSA評価(小底)

	評価対象生物		P(生	産性,	Produ	ıctivit	y)ス=	ア				S(感	受性,	Susc	eptibil	iity)スコア	PSA評価約	課
採点項目	標準和名	脊椎動物or 無脊椎動物	成熟開始年齡	最高年齡	抱卵数	最大体長	成熟体長	繁殖戦略	栄養段階	密度依存性	Pスコア総合点 (算術平均)	水平分布重複度	鉛直分布重複度	漁具の選択性	遭遇後死亡率	Sスコア総合点 (幾何平均)	PSA スコア	リスク区分
2.2.2	ヒメガザミ	無脊椎動物	1	1	3	1	1	1	1	2	1.50	3	3	2	3	2.71	3.10	中程度
2.2.2	ヘイケガニ	無脊椎動物	1	1	3	1	1	1	1	2	1.50	3	3	2	3	2.71	3.10	中程度
2.2.2	イヨスダレガイ	無脊椎動物	1	1	3	1	1	1	1	2	1.50	3	3	3	2	2.71	3.10	中程度
2.2.2	オカメブンブク	無脊椎動物	1	1	3	1	1	1	1	2	1.50	3	3	3	2	2.71	3.10	中程度
														PSA	スコア	'全体平均	3.10	中程度
	対象漁業	小型底びき網	Ì															
	対象海域	瀬戸内海																

表2.2.2b PSA評価採点

	111 11-14 111111	1		l .
	P(生産性スコア)	1(高生産性)	2(中生産性)	3(低生産性)
P1	成熟開始年齡	<5年	5-15年	>15年
P2	最高年齢(平均)	< 10歳	10-25歳	> 25歳
P3	抱卵数	>20,000卵/年	100-20,000卵/年	<100卵/年
P4	最大体長(平均)	< 100 cm	100-300 cm	> 300 cm
P5	成熟体長(平均)	< 40 cm	40-200 cm	> 200 cm
P6	繁殖戦略	浮性卵放卵型	沈性卵産み付け型	胎生・卵胎生
P7	栄養段階	< 2.75	2.75-3.25	> 3.25
P8	密度依存性(無脊椎動物のみ適用)	低密度における補償 作用が認められる	密度補償作用は認められない	低密度における逆補償作用(アリー効果)が認めら
	(E.33 1/3 -> -) XE(13)		3,40,00	れる
P	Pスコア総合点	算術平均により計算で	する	=(P1+P2+Pn)/n
	S(感受性スコア)	1(低感受性)	2(中感受性)	3(高感受性)
S1	水平分布重複度	< 10 %	10-30 %	> 30%
S2	鉛直分布重複度	漁具との遭遇確率	漁具との遭遇確率	漁具との遭遇確率は高
		は低い	は中程度	V
S3	漁具の選択性	成熟年齢以下の個体	成熟年齢以下の個体	成熟年齢以下の個体が
		は漁獲されにくい	が一般的に漁獲され	頻繁に漁獲される
			る	

S4	遭遇後死亡率	漁獲後放流された個	漁獲後放流された個	漁獲後保持される, も		
		体の多くが生存する	体の一部が生存する	しくは漁獲後放流され		
		ことを示す証拠があ	ことを示す証拠があ	ても大半が死亡する		
		る	る			
S	Sスコア総合点	幾何平均により計算で	する	'=(S1*S2*Sn)^(1/n)		
	PSAスコア	<2.64 低い	2.64-3.18 中程度	>3.18 高い		
	PSAスコア総合点	PとSのユークリッド	距離として計算する	'=SQRT(P^2 +S^2)		
	全体評価	PSAスコア全体平均値及び高リスク種の有無に基づき評価する				

これらの種の生産性に関する生物特性については、すべては明らかでないものの近縁の種からの類推等により表 2.2.2b の基準に基づきスコアを推測した。いずれの種も生産性に関するスコアは高くない(リスクは低い)が、漁業に対する感受性のスコアは高い値(リスクは高い)となり、総合的なリスクは中程度となった(表 2.2.2a)。このため評価は 3 点とする。

- ・吾智網: 吾智網の目合いは山口県周防灘の例では袋部で11.2cm と大きいため(金田 2005)、小型の生物は漁獲されにくいと考え4点とする。
- ・小型定置網:既述のとおり詳細は不明であることから1点とする。

混獲非利用種については、小底3点、吾智網4点、小型定置網1点であったことから、漁 獲量による重み付け平均値(2.9)より総合評価は3点とする。

1点	2点	3点	4点	5点
評価を	混獲非利用種の中に	混獲非利用種の中に資	混獲非利用種の中に	混獲非利用種の
実施で	資源状態が悪い種が	源状態が悪い種が少数	資源状態が悪い種は	個別資源評価に
きない	多数含まれる。PSAに	含まれる。PSAにおい	含まれない。PSAに	より、混獲種は
	おいて悪影響のリス	て悪影響のリスクは総	おいて悪影響のリス	資源に悪影響を
	クが総合的に高く、	合的に低いが、悪影響	クは低く、悪影響が	及ぼさない持続
	悪影響が懸念される	が懸念される種が少数	懸念される種は含ま	可能レベルにあ
	種が含まれる	含まれる	れない	ると判断できる

2.2.3 希少種への影響

環境省が指定した絶滅危惧種のうち、評価対象水域と分布域が重複する種は、アカウミガメ、ヒメクロウミツバメ、コアジサシ、カンムリウミスズメ、ヒメウである。これらの生物について PSA でリスク評価したものが表 2.2.3a、その根拠となる生物特性等をまとめたものが表 2.2.3b である。表 2.2.3a のとおり、寿命の長いアカウミガメで中程度と判断されたが、全体的には希少種に対するリスクは低いと判断される。このため 4 点とする。

表2.2.3a 希少種のPSA評価結果

	評価対象生物		P(生産性, Productivity)ス	コア								S(感受t	±, Susceptibi	liity) スコ	7		PSA評値	西結果
採点項目	標準和名	脊椎動物or 無脊椎動物	成熟開始年齡	最高年齡	抱卵数	最大体長	成熟体長	繁殖戦略	栄養段階	密度依存性	Pスコア総合点 (算術平均)	水平分布重複 度	鉛直分布重複 度	漁具の選択性	遭遇後死亡率	Sスコア総合点 (幾何平均)	PSA スコア	リスク区分
2.2.3	アカウミガメ	脊椎動物	3	3	2	2	2	2	2		2.29	1	1	1	- 1	1.00	2.49	低い
2.2.3	ヒメクロウミツバメ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	- 1	1.00	2.11	低い
2.2.3	コアジサシ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	- 1	1.00	2.11	低い
2.2.3	カンムリウミスズメ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	1	1.00	2.11	低い
2.2.3	ヒメウ	脊椎動物	1	2	3	1	2	3	3		2.14	1	1	1	1	1.00	2.36	低い
対象漁業	船びき網	対象海域	瀬戸内海											PSAZ:	コア全体	平均	2.24	低い

	評価対象生物		P(生産性, Productivity)ス	性, Productivity) スコア				S(感受t	生, Susceptibi	liity) スコ	r		PSA評価結果					
採点項目	標準和名	脊椎動物or 無脊椎動物	成熟開始 年齡	最高年齡	抱卵数	最大体長	成熟体長	繁殖戦略	栄養段階	密度依存性	Pスコア総合点 (算術平均)	水平分布重複 度	鉛直分布重複 度	漁具の選択性	遭遇後死亡率	Sスコア総合点 (幾何平均)	PSA スコア	リスク区分
2.2.3	アカウミガメ	脊椎動物	3	3	2	2	2	2	2		2.29	1	1	1	2	1.19	2.58	低い
2.2.3	ヒメクロウミツバメ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	2	1.19	2.21	低い
2.2.3	コアジサシ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	2	1.19	2.21	低い
2.2.3	カンムリウミスズメ	脊椎動物	1	1	3	1	1	3	3		1.86	1	1	1	2	1.19	2.21	低い
2.2.3	ヒメウ	脊椎動物	1	2	3	1	2	3	3		2.14	1	1	1	2	1.00	2.36	低い
対象漁業	小型底びき網	対象海域	瀬戸内海											PSAZ:	コア全体	平均	2.31	低い

	評価対象生物		P(生産性, Productivity)ス	コア								S(感受情	生, Susceptibi	liity) スコ	7		PSA評値	西結果
採点項目	標準和名	脊椎動物or 無脊椎動物	成熟開始年齡	最高年齡	抱卵数	最大体長	成熟体長	繁殖戦略	栄養段階	密度依存性	Pスコア総合点 (算術平均)	水平分布重複 度	鉛直分布重複 度	漁具の選択性	遭遇後死亡率	Sスコア総合点 (幾何平均)	PSA スコア	リスク区分
2.2.3	アカウミガメ	脊椎動物	3	3	2	2	2	2	2		2.29	1	2	1	2	1.41	2.69	中程度
2.2.3	ヒメクロウミツバメ	脊椎動物	1	1	3	1	1	3	3		1.86	2	1	1	2	1.41	2.33	低い
2.2.3	コアジサシ	脊椎動物	1	1	3	1	1	3	3		1.86	2	1	1	2	1.41	2.33	低い
2.2.3	カンムリウミスズメ	脊椎動物	1	1	3	1	1	3	3		1.86	2	1	1	2	1.41	2.33	低い
2.2.3	ヒメウ	脊椎動物	1	2	3	1	2	3	3		2.14	2	1	1	2	1.00	2.36	低い
対象漁業	刺し網	対象海域	瀬戸内海											PSAZ:	コア全体	平均	2.41	低い

表2.2.3b 希少種の生産性に関する生物特性値

X1:1:00 1177		_					
種名	成熟開 始年齢 (年)	最大年齢(年)	抱卵数	最大体 長(cm)	成熟 体長 (cm)	栄養段 階TL	出典
アカウミガメ	35	70~80	400	110	80	4	岡本ほか (2019), 石原 (2012), Seminoff (2004)
ヒメクロウミ ツバメ	2	6	1	20	19	3.6	浜口ほか (1985), Klimkiewicz et al. (1983)
コアジサシ	3	21	2.5	28	22	3.8	Clapp et al (1982),高野 (1981)
カンムリウミ スズメ	2	7	2	26	24	3.8	叶内ほか (1998), Preikshot (2005)
ヒメウ	<8	8	7	73	<73	>4.0	BirdLife International (2018), Whitehouse & Aydin (2016)

1点	2点	3点	4点	5点
評価を	希少種の中に資源状態が	希少種の中に資源状態	希少種の中に資源状	希少種の個別
実施で	悪く、当該漁業による悪	が悪い種が少数含まれ	態が悪い種は含まれ	評価に基づ
きない	影響が懸念される種が含	る。PSAやCAにおいて	ない。PSAやCAにおい	き、対象漁業
	まれる。PSAやCAにおいて	悪影響のリスクは総合	て悪影響のリスクは	は希少種の存
	悪影響のリスクが総合的	的に低いが、悪影響が	総合的に低く、悪影	続を脅かさな
	に高く、悪影響が懸念さ	懸念される種が少数含	響が懸念される種は	いと判断でき
	れる種が含まれる	まれる	含まれない	る

2.3 海洋環境・生態系への影響

2.3.1 食物網を通じた間接影響

2.3.1.1 捕食者への影響

マダイの捕食者としては、仙台湾ではアイナメ、ヒラメ(櫻井ほか 2018)、長崎県志々伎湾における当歳魚のマダイについてはマアナゴ、マエソ、クロアナゴ等が記録されている(松宮 1980)。ヒラメ、あなご類、マエソ(えそ類)、アイナメについては瀬戸内海にも分布するため、これらの種を捕食者として CA 評価を行った。

表2.3.1.1 マダイ捕食者に対する影響のCAによる評価結果

評価対象漁業	小底、吾智網、小型定置網
評価対象海域	瀬戸内海東部
評価対象魚種	ヒラメ、あなご類、えそ類、アイナメ
評価項目番号	2.3.1.1
評価項目	捕食者への影響
пшка	資源量 4
	再生產能力
評価対象要素	年齢・サイズ組成
11個/13/3/3/	分布域
	その他:
	捕食者のうちあなご類は減少傾向、えそ類等は情報がないが、餌生物であるマダ
評価根拠概要	イは減少していないことから捕食者にマダイ漁獲の影響が及んでいるとは考えら
	れない。よって4点とする。
	・ヒラメについては瀬戸内海系群として資源評価が行われており(山田・本田
	2020)、水準・動向については高位・横ばいとされているが、ここでは瀬戸内海東
	部における漁獲量(和歌山県、大阪府、兵庫県、岡山県、香川県、徳島県の合計)
	によって動向をみた。あなご類は農林水産統計(農林水産省 2019)による同じ海域
	(府県)の漁獲量を示す。えそ類、アイナメについては利用できる情報がなかっ
	た。当該海域におけるあなご類、ヒラメ及びマダイ東部系群の漁獲量を図
	2.3.1.1aに示す(山本·石田 2020)。
	3000 7
	── あなご類 ── ヒラメ ── マダイ
	2500
	2000
評価根拠	⊋ 2000 -
	1500
	豐 類 1000 -
	烘 1000
	500
	500
	0 +
	2003 2008 年 2013 2018
	図2.3.1.1a 東部6府県のあなご類、ヒラメ漁獲量及びマダイ東部系群漁獲量
	図2.3.1.1aによれば、ヒラメは瀬戸内海系群の資源評価結果と同様に横ばい傾向

であるが、あなご類は減少傾向を示している。一方、マダイ漁獲量は横ばい、ないし増加傾向であり $2003\sim2018$ 年のあなご類漁獲量とは負の相関が見られた (p<0.01) (図2.3.1.1b)。

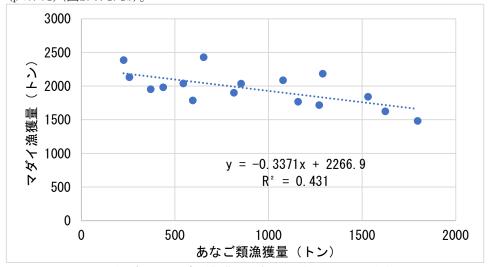


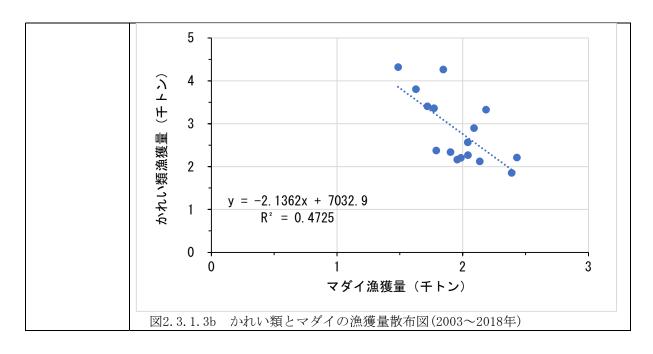
図2.3.1.1b あなご類とマダイ漁獲量の相関図(2003~2018年)

あなご類の減少傾向は、被食者であるマダイが横ばい、ないし増加傾向であるため餌不足(マダイ漁獲の影響)が原因とは考えられない。ヒラメについては、資源は安定しており、やはり餌不足の懸念はないであろう。えそ類、アイナメなど、ほかの捕食者の豊度に関する情報はないが、やはり被食者であるマダイが横ばい、ないし増加傾向であることからマダイの漁獲による餌不足が起きている懸念はないであろう。このため4点とする。

1点	2点	3点	4点	5点
評価を実施でき	多数の捕食者に定	一部の捕食者	CAにより対象漁業	生態系モデルベースの
ない	向的変化や変化幅	に定向的変化	の漁獲・混獲によ	評価により、食物網を
	の増大などの影響	や変化幅の増	って捕食者が受け	通じた捕食者への間接
	が懸念される	大などの影響	る悪影響は検出さ	影響は持続可能なレベ
		が懸念される	れない	ルにあると判断できる

2.3.1.2 餌生物への影響

瀬戸内海における未成魚期、成魚期マダイの餌生物は、あみ類が最も多く、続いて海藻、 短尾類、多毛類、貝類等である(高場 2004)。これら小型無脊椎動物、植物は漁業の対象では ないため豊度に関するデータは得られていないが、摂餌するマダイは図 2.3.1.1a に示す如 く、漁獲量は安定しているため、餌生物への捕食圧が定向的に大きく変化していることは考 えにくい。このため4点とする。


1点	2点	3点	4点	5点
評価を	多数の餌生物に	一部の餌生物に定	CAにより対象漁業の	生態系モデルベースの評価に
実施で	定向的変化や変	向的変化や変化幅	漁獲・混獲によって	より、食物網を通じた餌生物
きない	化幅の増大など	の増大などの影響	餌生物が受ける悪影	への間接影響は持続可能なレ
	の影響が懸念さ	が懸念される	響は検出されない	ベルにあると判断できる
	れる			

2.3.1.3 競争者への影響

瀬戸内海東部においてマダイの競争者と考えられるのは、③ 6)の各漁業での漁獲量が多い 魚種の中では、小型甲殻類、ベントス食性を持つかれい類と考えられる。

マダイ競争者に対する影響のCAによる評価結果

	りの影響VAAによる評価結果	
評価対象漁業	小底、吾智網、小型定置網	
評価対象海域	瀬戸内海東部	
評価対象魚種	かれい類	
評価項目番号	2. 3. 1. 3	
評価項目	競争者への影響	
	資源量	2
	再生産能力	
評価対象要素	年齢・サイズ組成	
	分布域	
	その他:	
 評価根拠概要	かれい類は減少傾向であるが、この原因	因のひとつがマダイとの餌を巡る競争であ
可圖似幾級安	る可能性も否定できないため2点とする	0
評価根拠	洋南区分を除く和歌山県、大阪府、兵庫 く徳島県)の合計を用いた。かれい類漁 と図2.3.1.3aのとおりである(山本・石目	2013 2018 年 2013 2018 を 3かれい類及びマダイの漁獲量 かに見ると減少傾向であるが、マダイは横 者の散布図は図2.3.1.3bのとおりで有意ないが、類の主な減少要因は漁業の影響ないないが、負の相関関係が見られたという 争を通じて、かれい類の減少原因のひとつ

1点	2点	3点	4点	5点
評価	多数の競争者に定	一部の競争者に定	CAにより対象漁業の	生態系モデルベースの評価
を実	向的変化や変化幅	向的変化や変化幅	漁獲・混獲によって	により、食物網を通じた競
施で	の増大などの影響	の増大などの影響	競争者が受ける悪影	争者への間接影響は持続可
きな	が懸念される	が懸念される	響は検出されない	能なレベルにあると判断で
\ \				きる

2.3.2 生態系全体への影響

図 2.3.2a に示した評価対象海域における漁獲物の栄養段階組成をみると、瀬戸内海区では漁獲は TL2.5-3.5 に属する生物で多く、図 2.3.2b で約 30%を占める栄養段階 2.5 程度のカタクチイワシが寄与していることがわかる。図 2.3.2c に示した評価対象海域の総漁獲量とMTLc を見ると、瀬戸内海区では、2014 年以降、総漁獲量及び MTLc に有意な減少(p<0.05)が認められる。主漁場が評価対象海区内で、漁獲量の減少が認められたのは、あさり類、あなご類、あわび類、イカナゴ、うに類、がざみ類、かれい類、クロダイ・ヘダイ、コノシロ、サザエ、タチウオ、すずき類、ヒラメ、ふぐ類、まあじ類等であり、タチウオ、すずき類、ヒラメ等の高次捕食者の減少が MTLc の低下に寄与していると考えられる。評価対象漁法によるヒラメの漁獲のみが要因とは考えがたいものの、栄養段階に関わらず幅広い魚種に漁獲量の減少傾向が認められ、MTLc が低下していることから 2 点とする。

1点	2点	3点	4点	5点
評価	対象漁業による影響の	対象漁業による影響	SICAにより対象漁業	生態系の時系列情
を実	強さが重篤である、も	の強さは重篤ではな	による影響の強さは	報に基づく評価に
施で	しくは生態系特性の定	いが、生態系特性の	重篤ではなく、生態	より、生態系に不
きな	向的変化や変化幅拡大	変化や変化幅拡大な	系特性に不可逆的な	可逆的な変化が起
V	が起こっていることが	どが一部起こってい	変化は起こっていな	こっていないと判
	懸念される	る懸念がある	いと判断できる	断できる

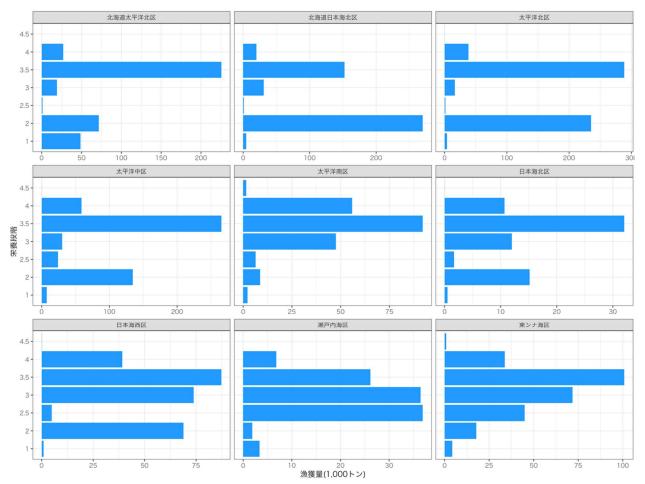


図2.3.2a 評価対象海域における漁獲物の栄養段階組成

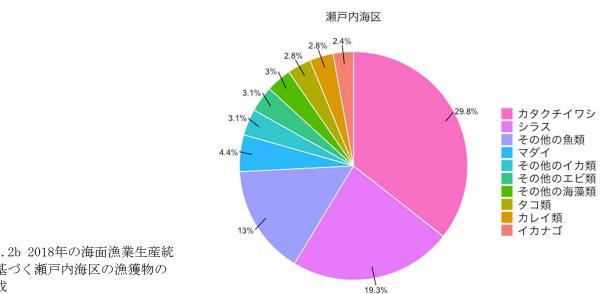


図2.3.2b 2018年の海面漁業生産統 計に基づく瀬戸内海区の漁獲物の 種組成

図2.3.2c 海面漁業生産統計調査から求めた、評価対象海域における総漁獲量(上段)とMTLc(下段)の推移

2.3.3 種苗放流が生態系に与える影響

種苗放流は漁獲量増加、資源回復等の効果が見込まれる反面、大量の人工種苗を天然の海域に放流することにともなう自然界、海洋生態系への影響が指摘されている(北田 2001, 水産総合研究センター・水産庁 2015)。ここでは、遺伝的健全性確保(2.3.3.1)、遺伝子撹乱回避(2.3.3.2)、野生種への疾病蔓延回避(2.3.3.3)について評価を行う。

2.3.3.1 種苗遺伝的健全性確保のための必要親魚量確保

遺伝的多様性確保のため、それぞれの種苗生産施設では100~200 尾程度の親魚を1 水槽または複数の水槽に収容し、自然産卵により受精卵を得ている。これらの親魚から生産する人工放流種苗については、年1回ではなく複数回の種苗生産を実行することで野生集団に近いレベルまで遺伝的多様性が高まることが報告されている(水産総合研究センター・水産庁2015)。よって5点とする。

1点	2点	3点	4点	5点
継代した人		放流対象海域から	放流対象海域から得	放流対象海域から得た天然魚を
工魚を親魚		得た天然魚を親魚	た天然魚を親魚と	親魚とし、60尾以上を確保した
としている		としている。若し	し、これを定期的に	上で、これを定期的に入れ替え
		くはPNIが0.3未満	入れ替えている	ている。もしくはPNIO.5以上

2.3.3.2 遺伝子撹乱回避措置

日本沿岸域におけるマダイは、日本海西・東シナ海、日本海北・中部、瀬戸内海中・西部、

瀬戸内海東部、太平洋南部、太平洋中部の6系群で資源が評価されている。マイクロサテライト多型分析によると、海域間に顕著な遺伝的差異は認められておらず、全国的にひとつの大きな遺伝的集団であると考えられている。しかし、マダイの管理単位については、遺伝的リスクを含め資源を管理するといった観点からも上記6系群を元に設定することが望ましい(水産総合研究センター・水産庁 2015)。以上より5点とする。

1点	2点	3点	4点	5点
親魚の属する系群	親魚採捕海域(河		系群構造は不明であ	系群(若しくは遺伝的に均一
の分布域と異なる	川)と種苗放流海		るが、親魚採捕海域	集団)構造を把握した上で、
海域(河川)にしば	域(河川)が異なる		(河川)と種苗放流海	同一系群(集団)内での親魚
しば種苗を放流し	ことが稀にある		域(河川)が同一であ	採捕、種苗放流を行ってい
ている			る	る

2.3.3.3 野生種への疾病蔓延回避措置

種苗生産機関では、病原体の天然海への拡散を避けるために、「防疫的見地からみた放流種苗に関する申し合わせ事項(I)」(栽培漁業技術開発推進事業全国協議会 1999)に基づき、種苗生産過程で異常な死亡が認められなかった生産回次の種苗のみを放流している(西岡2019)。以上より5点とする。

1点	2点	3点	4点	5点
魚病診断体制、蔓延防止 措置ともに未整備である				魚病診断体制が整えられて おり、蔓延防止体制がある

2.3.4 海底環境への影響

小底は着底漁具であるが、瀬戸内海区では、着底漁具による撹乱に対する海底環境の応答 を評価するための長期的な時系列データ(多様度指数等)が利用可能でないため、SICA評価を 行った。

評価対象漁業	小底
評価対象海域	瀬戸内海区
評価項目番号	2. 3. 4
評価項目	海底環境
空間規模スコア	3
空間規模評価根	瀬戸内海区の小底の操業面積は、操業が困難な航路や潮の速い海域を除くと最大で
拠概要	も瀬戸内海の70%程度と考えられる。評価手順書に沿うと小底の空間規模スコアは3
	となる。
時間規模スコア	2
時間規模評価根	瀬戸内海区における小底の操業日数は年間140~170日で悪天候等により制限される
拠概要	が年間の約26%が操業日数であると考えると、時間規模スコアは2となる。
影響強度スコア	2
影響強度評価根	空間規模と時間規模のスコア、それぞれ1点、1点、漁法は1そうびきであるから強度
拠概要	スコアを算出すると、SQRT(3^2 + 1^2) = 3.16となる。

L Nest		
水深スコア	1	
水深スコア評価	瀬戸内海におけるマダイの分布水深は平均的に25m以浅と考えられるため、スコア	
根拠	は1となる。	
地質スコア	2	
地質スコア評価	下図のとおり、瀬戸内海の底質は礫や転石とみられることからスコアは2とした	
根拠	(MIRC 2016) _o	
	34.5°N	
	底質の硬度	
	ep 34 N	
	33.5°N	
	33°N -	
	131°E 132°E 133°E 134°E 135°E Longitude	
地形スコア	2	
地形スコア評価	水深データから算出した凹凸度を指標とすると、地形は不規則と考えられるためス	
根拠	コアは2とした(MIRC 2016)。	
,,,,,,		
	34.5°N	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	⊕ 34°N 0.75	
	0.75 0.50	
	33.5°N - 0.25	
	0.00	
	33°N -	
	131°E 132°E 133°E 134°E 135°E	
総合回復力	Longitude 1.67	_
総合回復力評価	上記3要素の算術平均((2+1+2)/3)から総合回復力は1.67となった。	\dashv
根拠		
SRスコア	1(低い(2.60))	ョ
SRスコア評価根	S(規模と強度)とR(回復力)のユークリッド距離を求めると(SQRT(S^2+R^2))=2.60と	\neg
拠	なり、中程度との境界値2.64を下回るためスコアは1(影響強度は低度)となった。	
Consequence	種構成	\dashv
(結果)	機能群構成	\dashv
スコア	群集分布	\dashv
	栄養段階組成 4	\dashv
	サイズ組成	\dashv
Consequence	リイヘ組成	\dashv
Printed Pri	ここでは、小成のMILCの雇用変化をもとに未養技権組成に有自して、影響組度の制 果を評価した。	
可测灯双观场安	米を評価した。 その結果、小底のMTLcには増加傾向が認められたが、その幅は小さいため結果スコ	
	ての結果、小成のMILCには増加傾向が認められたが、その幅は小さいたの指来へコー アは4点とする。	
	/ ヤムサスパ y る。	

吾智網、小型定置網は着底漁具ではないため影響は軽微と考え 4 点とした。このためすべての漁業は 4 点と評価された。

1点	2点	3点	4点	5点
評価を	当該漁業による海底	当該漁業による海底環	SICAにより当該漁	時空間情報に基づ
実施で	環境への影響のイン	境への影響のインパク	業が海底環境に及	く海底環境影響評
きない	パクトが重篤であ	トは重篤ではないと判	ぼすインパクトお	価により、対象漁
	り、漁場の広い範囲	断されるが、漁場の一	よび海底環境の変	業は重篤な悪影響
	で海底環境の変化が	部で海底環境の変化が	化が重篤ではない	を及ぼしていない
	懸念される	懸念される	と判断できる	と判断できる

2.3.5 水質環境への影響

評価対象漁法に由来するか判別ができないが、評価対象海域における海洋汚染の発生件数は1件のみであり(海上保安庁 2019)、水質環境への影響は軽微であると考えられる。

種苗生産施設については、水質汚濁防止法等の施行状況によれば(環境省 2020b)、該当すると思われる特定事業場に関する平成30年度の改善命令、違反はいずれも0件であった。このため総合評価は4点とする。

1点	2点	3点	4点	5点
多くの物質に関して対		一部物質に関し	対象漁業もしく	対象漁業もしくは種苗生産施
象漁業もしくは、種苗		て対象漁業もし	は、種苗生産施	設等からの排出物は適切に管
生産施設等からの排出		くは、種苗生産	設等からの排出	理されており、水質環境への
が水質環境へ及ぼす悪		施設等からの排	物は適切に管理	負荷は軽微であると判断され
影響が懸念される。も		出が水質環境へ	されており、水	るだけでなく、対象漁業もし
しくは取り組み状況に		及ぼす悪影響が	質環境への負荷	くは種苗生産施設等による水
ついて情報不足により		懸念される	は軽微であると	質環境への負荷を低減する取
評価できない			判断される	り組みが実施されている

2.3.6 大気環境への影響

長谷川(2010)によれば、我が国の漁業種類ごとの単位漁獲量・水揚げ金額あたり二酸化炭素排出量の推定値は下表のとおりである。船びき網は 2.130、小底は 1.407 と我が国漁業の中では中程度の CO_2 排出量となっているため、評価はそれぞれ 3 点が妥当と考えられる。小型定置網は網起こしに用いるのみであるため影響はより軽微と考え 4 点とする。 3 漁法の漁獲量による加重平均は 3.2 となるため、3 点を配点する。

表 2.3.6 漁業種類別の漁獲量・生産金額あたり CO2排出量試算値(長谷川 2010)

漁業種類	t-CO ₂ /t	t-CO ₂ /百万円
小型底びき網旋びきその他	1. 407	4.98
沖合底びき網1そうびき	0.924	6.36
船びき網	2. 130	8.29
中小型1そうまき巾着網	0. 553	4.34
大中型その他の1そうまき網	0.648	7.57
大中型かつおまぐろ1そうまき網	1.632	9.2
さんま棒うけ網	0.714	11.65
沿岸まぐろはえ縄	4.835	7.95
近海まぐろはえ縄	3.872	8.08
遠洋まぐろはえ縄	8.744	12.77
沿岸かつお一本釣り	1. 448	3.47
近海かつお一本釣り	1. 541	6.31
遠洋かつお一本釣り	1.686	9.01
沿岸いか釣り	7. 144	18.86
近海いか釣り	2.676	10.36
遠洋いか釣り	1.510	10. 31

1点	2点	3点	4点	5点
評価を実施	多くの物質に関	一部物質に関し	対象漁業からの排	対象漁業による大気環境
できない	して対象漁業か	て対象漁業から	出ガスは適切に管	への負荷を軽減するため
	らの排出ガスに	の排出ガスによ	理されており、大	の取り組みが実施されて
	よる大気環境へ	る大気環境への	気環境への負荷は	おり、大気環境に悪影響
	の悪影響が懸念	悪影響が懸念さ	軽微であると判断	が及んでいないことが確
	される	れる	される	認されている

引用文献

BirdLife International. (2018). Uria aalge. The IUCN Red List of Threatened Species 2018: e.T22694841A132577296. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694841A132577296.en. Downloaded on 21 May 2020.

Clapp, R. B., M. K. Klimkiewicz and J. H. Kennard (1982) Longevity records of northe American birds: Gaviidae through alcidae, J. Field Ornithol., 53, 81-124. https://www.jstor.org/stable/pdf/4512701.pdf?refreqid=excelsior%3A00ff8d18094bbb36c4cf1540f7b14152

- 浜口哲一・森岡照明・叶内拓哉・蒲谷鶴彦 (1985) 山渓カラー名鑑日本の野鳥. 山と渓谷社, 591pp.
- 長谷川勝男 (2010) わが国における漁船の燃油使用量とCO₂排出量の試算. 水産技術, **2**, 111-121. https://agriknowledge.affrc.go.jp/RN/2010792523.pdf
- 兵庫県 (2006) 兵庫県瀬戸内海海域小型底びき網漁業包括的資源回復計画 https://www.jfa.maff.go.jp/j/suisin/s keikaku/pdf/hyougo kosoko.pdf
- 兵庫県 (2017) 「ひょうごの農林水産業」指導の手引き,46-53, https://web.pref.hyogo.lg.jp/nk02/nou/documents/29tebiki-6.pdf
- 石原 孝 (2012) 第3章 生活史 成長と生活場所.「ウミガメの自然誌」. 東京大学出版会, 東京,57-83.
- 海上保安庁 (2019) 海上保安統計年報, 70, https://www.kaiho.mlit.go.jp/doc/doc/hakkou/2019 01 tokei.pdf
- 金田禎之 (2005) 日本漁具・漁法図説 増補二訂版、成山堂書店, 東京, pp637
- 環境省 (2017) 瀬戸内海の概況
 - https://www.env.go.jp/water/heisa/heisa_net/setouchiNet/seto/kankyojoho/sizenkankyo/gaikyo.htm
- 環境省 (2020a) 環境省レッドデータブック 2020 https://www.env.go.jp/press/files/jp/114457.pdf
- 環境省 (2020b) 平成 30 年度水質汚濁防止法等の施行状況 http://www.env.go.jp/water/H30sekoujokyo.pdf
- 叶内拓哉·安部直哉·上田秀雄 (1998) 山渓ハンディ図鑑 7 日本の野鳥. 山と渓谷社, 東京, 672pp
- 唐川純一 (1998) 岡山県西部水域において秋冬季に石桁漕網により漁獲した動物群の組成 (1993 年度), 岡山水試報, 13, 1-14, https://www.pref.okayama.jp/norin/suishiken/houkoku/13/H10.1-14.pdf
- 北田修一 (2001) 栽培漁業と統計モデル分析、共立出版、pp335.
- Klimkiewicz, M. K., R. B. Clapp, A.G. Futcher (1983) Longevity records of north American birds: Remizidae through Parulinae, J. Field Ornithol, 54, 287-294. https://www.jstor.org/stable/pdf/4512835.pdf?refreqid=excelsior%3A60d0af28a14fa670b627b00bd acc8b67
- 久保田 洋・亘 真吾・古川誠志郎・入路光雄・神山龍太郎・半沢祐大・竹村紫苑・杉本あおい (2020) 令和元(2019)年度ブリの資源評価、水産庁・水産機構 http://abchan.fra.go.jp/digests2019/details/201945.pdf
- 松宮義晴 (1980) マダイをめぐる魚種間の関係, 研究成果(農林水産技術会議編), 129, 132-136
- 松村真作・福田富男 (1981) 岡山県東部における小型底曳網標本船の漁獲物組成と海上投棄 魚の実態(昭和55年度),55年度岡山水試事報,56-71
- MIRC (2016) 北西太平洋底質メッシュデジタルデータ http://www.mirc.jha.or.jp/products/BMMDv2/

- 中神正康・井須小羊子・渡邊千夏子・由上龍嗣・上村泰洋・古市 生・渡部亮介 (2020) 令和元 (2019)年度マアジ太平洋系群の資源評価, 水産庁・水産機構 http://abchan.fra.go.jp/digests2019/details/201903.pdf
- 西岡豊弘 (2019) 海産魚の種苗生産過程に発生するウイルス性神経壊死症の防除に関する研究.水研機構研報, 48, 1-60. https://www.fra.affrc.go.jp/bulletin/bull/bull48/48-01.pdf
- 農林水産技術会議事務局 (1980) 資源培養方式開発のための沿岸域における若令期タイ類補 給機構に関する研究、研究成果、129、pp.299
- 農林水産省 (2019) 海面漁業生産統計調査 https://www.maff.go.jp/j/tokei/kouhyou/kaimen_gyosei/index.html
- 農林水産省 (2020) 2018 年漁業センサス https://www.maff.go.jp/j/tokei/census/fc/2018/2018fc.html
- 岡本 慶・越智大介・菅沼弘行 (2019) 海亀類(総説), 令和元年度国際漁業資源の現況, 水産庁・水産研究・教育機構, http://kokushi.fra.go.jp/R01/R01 46 turtles-R.pdf
- Preikshot, D., (2005) Data sources and derivation of parameters for generalised Northeast Pacific Ocean Ecopath with Ecosim models. Fisheries Centre Research Reports 13(1):179-206. http://epub.sub.uni-hamburg.de/epub/volltexte/2011/12091/pdf/13_1b.pdf
- 栽培漁業技術開発推進事業全国協議会 (1999) 防疫的見地からみた放流種苗に関する申し合わせ事項(I)
- 櫻井慎大·冨樫博幸·天野洋典·栗田 豊 (2018) 仙台湾における東日本大震災後の魚類相および魚類間の捕食・被食関係、東北底魚研究、38、66-73
- Seminoff, J.A. (2004) *Chelonia mydas*. The IUCN Red List of Threatened Species 2004: e.T4615A11037468. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T4615A11037468.en. Downloaded on 27 November 2019.
- 水産研究・教育機構・瀬戸内海区水産研究所 (2020) しらふじ丸調査航海報告 http://feis.fra.affrc.go.jp/shirafuji/index.html
- 水産総合研究センター・水産庁 (2015) 人工種苗放流に係る遺伝的多様性への影響リスクを 低減するための技術的な指針,人工種苗の遺伝的多様性に関する指針検討委員会編,東京, 29. https://www.jfa.maff.go.jp/j/koho/bunyabetsu/pdf/identeki tayousei sisin.pdf
- 高場 稔 (2004) 広島県におけるマダイ資源培養に関する研究(学位論文)、pp.110 https://agriknowledge.affrc.go.jp/RN/2030691728.pdf
- 高野伸二 (1981) カラー写真による日本産鳥類図鑑, 東海大学出版会, pp.202
- 東海 正 (1993) 瀬戸内海における小型底びき網漁業の資源管理-投棄魚問題と網目規制-, 南西水研研報, 26, 31-106, http://feis.fra.affrc.go.jp/publi/bull nansei/bull nansei2604.pdf
- 和歌山県水産試験場・徳島県立水産総合技術支援センター水産研究課・高知県水産試験場・ 愛媛県農林水産研究所水産研究センター・大分県農林水産研究指導センター水産研究部 (2020) 令和元(2019)年度資源評価調査報告書, タチウオ http://abchan.fra.go.jp/digests2019/trends/201912.pdf
- Whitehouse, G. A., and K. Y. Aydin. (2016) Trophic structure of the eastern Chukchi Sea: An updated

- mass balance food web model. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-318, 175. https://repository.library.noaa.gov/view/noaa/9107
- 山田徹生・本田 聡 (2020) 令和元(2019)年度ヒラメ瀬戸内海系群の資源評価、水産庁・水産研究・教育機構 http://abchan.fra.go.jp/digests2019/details/201961.pdf
- 山本圭介・石田 実 (2020) 令和元(2019)年度マダイ瀬戸内海東部系群の資源評価、水産庁・水産研究・教育機構 http://abchan.fra.go.jp/digests2019/details/201948.pdf