ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文

Length estimation of fish detected as non-occluded using a smartphone application and deep learning method

https://fra.repo.nii.ac.jp/records/2002787
https://fra.repo.nii.ac.jp/records/2002787
6ca2e46d-018d-43e9-b808-5130c3bdf398
名前 / ファイル ライセンス アクション
shibata shibata et al Length estimation of fish detected.pdf (2.5 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2024-04-24
タイトル
タイトル Length estimation of fish detected as non-occluded using a smartphone application and deep learning method
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 Mask R-CNN; Mobile imaging; Occlusion; Total length; composition in catch; Stock assessment
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 柴田, 泰宙

× 柴田, 泰宙

WEKO 892
e-Rad 80726266

en Shibata, Yasutoki

ja 柴田, 泰宙
ISNI

ja-Kana シバタ, ヤストキ

Search repository
岩原, 由佳

× 岩原, 由佳

WEKO 76
e-Rad 20871073

en Iwahara, Yuka

ja 岩原, 由佳


ja-Kana イワハラ, ユカ

Search repository
眞名野, 将大

× 眞名野, 将大

WEKO 1160
e-Rad 10995971

en Manano, Masahiro

ja 眞名野, 将大


ja-Kana マナノ, マサヒロ

Search repository
金谷, 彩友美

× 金谷, 彩友美

WEKO 1051

en Kanaya, Ayumi

ja 金谷, 彩友美


ja-Kana カナヤ, アユミ

Search repository
曽根, 亮太

× 曽根, 亮太

en Sone, Ryota
Aichi Fisheries Research Institute

ja 曽根, 亮太
愛知県水産試験場

ja-Kana ソネ, リョウタ

Search repository
田村, 怜子

× 田村, 怜子

en Tamura, Satoko
Fisheries Technology Center Sagami Bay Experiment Station of Kanagawa Prefectural Government

ja 田村, 怜子
神奈川県水産技術センター相模湾試験場

ja-Kana タムラ, サトコ

Search repository
角田, 直哉

× 角田, 直哉

en Kakuta, Naoya
Fisheries Technology Center Sagami Bay Experiment Station of Kanagawa Prefectural Government

ja 角田, 直哉
神奈川県水産技術センター相模湾試験場

ja-Kana カクタ, ナオヤ

Search repository
西野, 智也

× 西野, 智也

en Nishino, Tomoya
Computermind Corp.

ja 西野, 智也
株式会社コンピュータマインド

ja-Kana ニシノ, トモヤ

Search repository
石原, 翔

× 石原, 翔

en Ishihara, Akira
Computermind Corp.

ja 石原, 翔
株式会社コンピュータマインド

ja-Kana イシハラ, アキラ

Search repository
久貝, 俊悟

× 久貝, 俊悟

en Kugai, Shungo
Computermind Corp.

ja 久貝, 俊悟
株式会社コンピュータマインド

ja-Kana クガイ, シュンゴ

Search repository
抄録
内容記述タイプ Abstract
内容記述 Uncertainty in stock assessment can be reduced if accurate and precise length composition of catch is available. Length data are usually manually collected, although this method is costly and time-consuming. Recently, some studies have estimated fish species and length from images using deep learning by installing camera systems in fishing vessels or a fish auction center (Álvarez -Ellacuria et al., 2020; Lekunberri et al., 2022; Ovalle et al., 2022; Palmer et al., 2022). Once a deep learning model is properly trained, it does not require expensive and time-consuming manual labor. However, several studies on the deep learning models had monitoring fishing practices using electronic monitoring systems; therefore, it is necessary to solve many issues, such as counting the total number of fish in the catch. In this study, we proposed a new deep learning-based method to estimate fish length using images. Species identification was not performed by the model, and images were taken manually by the measurers; however, length composition was obtained only for non-occluded fish detected by the model. A smartphone application was developed to calculate scale information (cm/pixel) from a known size fish box in fish images, and the Mask R-CNN (Region-based convolutional neural networks) model was trained using 76,161 fish to predict non-occluded fish. Two experiments were conducted to confirm whether the proposed method resulted in errors in the length composition. First, we manually measured the total length (TL) for four species and one genus (categories), estimated the TL using a deep learning method, and calculated the bias. Second, multiple fish in a fish box were photographed simultaneously, and the relative difference between the mean TL estimated from the non-occluded fish and the true mean TL from all fish was calculated. The results showed that the biases of all five categories were from −0.69 cm to 0.37 cm and the range of difference was from −1.14 % to 1.40 % regardless of the number of fish in the fish box. The deep learning method was used not to replace the measurer but to increase their measurement efficiency. The proposed method is expected to increase opportunities for the application of deep learning-based fish length estimation in areas of research that are different from the scope of conventional electronic monitoring systems.
言語 en
書誌情報 en : Fisheries Research

巻 273, p. 106970, 発行日 2024-05
出版者
出版者 Elsevier
言語 en
ISSN
収録物識別子タイプ PISSN
収録物識別子 0165-7836
書誌レコードID
収録物識別子タイプ EISSN
収録物識別子 1872-6763
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 10.1016/j.fishres.2024.106970
情報源
関連タイプ isIdenticalTo
識別子タイプ Local
関連識別子 23237004
言語 ja
関連名称 水産資源研究所 水産資源研究センター 漁業情報解析部(横浜)
関連サイト
関連タイプ isIdenticalTo
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/pii/S0165783624000341
言語 en
関連名称 Elsevier : Fisheries Research
著者版フラグ
出版タイプ SMUR
出版タイプResource http://purl.org/coar/version/c_71e4c1898caa6e32
戻る
0
views
See details
Views

Versions

Ver.1 2024-04-24 06:33:12.275398
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3